Wavelet Transform Associated with Quadratic-Phase Hankel Transform

被引:0
|
作者
Roy, Chandra [2 ]
Kumar, Tanuj [1 ,3 ]
Prasad, Akhilesh [4 ]
Jha, Govind Kumar [5 ]
机构
[1] VIT AP Univ, Sch Adv Sci, Dept Math, Amaravati, Andhra Pradesh, India
[2] Vinoba Bhave Univ, Univ Dept Math, Hazaribagh, India
[3] UPES, Dept Math, Dehra Dun, India
[4] Indian Inst Technol, Indian Sch Mines, Dept Math & Comp, Dhanbad, India
[5] Markham Coll Commerce, Dept Math, Hazaribagh, India
来源
NATIONAL ACADEMY SCIENCE LETTERS-INDIA | 2025年 / 48卷 / 01期
关键词
Wavelet transform; Quadratic-phase transform; Convolution; FRACTIONALIZATION; CONVOLUTION; PAIR;
D O I
10.1007/s40009-024-01423-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we construct a new wavelet transform in the framework of the quadratic-phase Hankel transform. Further, we establish the Parseval's relation and reconstruction formula of continuous quadratic-phase Hankel wavelet transform.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 50 条
  • [41] Quadratic-phase Fourier transform of tempered distributions and pseudo-differential operators
    Kumar, Manish
    Pradhan, Tusharakanta
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2022, 33 (06) : 449 - 465
  • [42] Analytical solutions of generalized differential equations using quadratic-phase Fourier transform
    Shah, Firdous A.
    Lone, Waseem Z.
    Nisar, Kottakkaran Sooppy
    Khalifa, Amany Salah
    AIMS MATHEMATICS, 2022, 7 (02): : 1925 - 1940
  • [43] The Wave Packet Transformation in the Framework of Quadratic-Phase Hankel Transformation
    Chandra Roy
    Akhilesh Prasad
    Govind Kumar Jha
    International Journal of Applied and Computational Mathematics, 2025, 11 (1)
  • [44] The novel Clifford-valued quadratic-phase wave packet transform and its applications
    Bhat, M. Younus
    Rafiq, Shahbaz
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2025, 16 (01)
  • [45] Two Versions of Quadratic-Phase Hankel Transformations of Random Order
    Roy, Chandra
    Kumar, Tanuj
    Prasad, Akhilesh
    Jha, Govind Kumar
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2024, 15 (02): : 647 - 661
  • [46] Uncertainty principles for the continuous Hankel Wavelet transform
    Baccar, C.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (06) : 413 - 429
  • [47] Uncertainty Principles for the Two-Sided Quaternion Windowed Quadratic-Phase Fourier Transform
    Bhat, Mohammad Younus
    Dar, Aamir Hamid
    Nurhidayat, Irfan
    Pinelas, Sandra
    SYMMETRY-BASEL, 2022, 14 (12):
  • [48] Wavelet transform associated with Dunkl transform
    Prasad, Akhilesh
    Verma, R. K.
    Verma, S. K.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (09) : 481 - 496
  • [49] Octonion Wigner distribution of 3D signals in the quadratic-phase fourier transform domain and associated uncertainty principles
    Dar, Aamir H.
    Zayed, Mohra
    Bhat, M. Younus
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
  • [50] PHASE-SPACE, WAVELET TRANSFORM AND TOEPLITZ-HANKEL TYPE OPERATORS
    JIANG, QT
    PENG, LH
    ISRAEL JOURNAL OF MATHEMATICS, 1995, 89 (1-3) : 157 - 171