Nanoconfined tandem three-phase photocatalysis for highly selective CO2 reduction to ethanol

被引:0
|
作者
Huo, Hailing [1 ]
Hu, Ting [1 ]
Zhong, Zhiqing [1 ]
Zhan, Cheng [1 ]
Huang, Chengxi [1 ]
Ju, Qiang [1 ]
Zhang, Liang [1 ]
Wu, Fang [2 ]
Kan, Erjun [1 ]
Li, Ang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Engn Res Ctr Semicond Device Optoelect Hybrid Inte, MIIT Key Lab Semicond Microstruct & Quantum Sensin, Nanjing 210094, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; PHOTOREDUCTION; NANOPARTICLES; CONVERSION; OXIDATION; CATALYST; WATER;
D O I
10.1039/d4sc04647a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conversion of CO2 and H2O into ethanol with high selectivity via photocatalysis is greatly desired for effective CO2 resource utilization. However, the sluggish and challenging C-C coupling hinders this goal, with the behavior of *CO holding the key. Here, a nanoconfined and tandem three-phase reaction system is established to simultaneously enhance the *CO concentration and interaction time, achieving an outstanding ethanol selectively of 94.15%. This system utilizes a tandem catalyst comprising an Ag core and a hydrophobic Cu2O shell. The hydrophobic Cu2O shell acts as a CO2 reservoir, effectively overcoming the CO2 mass-transfer limitation, while the Ag core facilitates the conversion of CO2 to CO. Subsequently, CO undergoes continuous reduction within the nanoconfined mesoporous channels of Cu2O. The synergy of enhanced mass transfer, nanoconfinement, and tandem reaction leads to elevated *CO concentrations and prolonged interaction time within the Cu2O shell, significantly reducing the energy barrier for *CO-*CO coupling compared to the formation of *CHO from *CO, as determined by density functional theory calculations. Consequently, C-C coupling preferentially occurs over *CHO formation, producing excellent ethanol selectivity. These findings provide valuable insights into the efficient production of C2+ compounds.
引用
收藏
页码:15134 / 15144
页数:11
相关论文
共 50 条
  • [11] Selective Electrosynthesis of Ethanol via Asymmetric C-C Coupling in Tandem CO2 Reduction
    Luan, Peng
    Dong, Xue
    Liu, Linqi
    Xiao, Jianping
    Zhang, Pengfei
    Zhang, Jie
    Chi, Haibo
    Wang, Qingnan
    Ding, Chunmei
    Li, Rengui
    Li, Can
    ACS CATALYSIS, 2024, 14 (11): : 8776 - 8785
  • [12] Efficient reduction of CO2 to C2 hydrocarbons by tandem nonthermal plasma and photocatalysis
    Li, He
    Xia, Mengyang
    Wang, Xiaxin
    Chong, Ben
    Ou, Honghui
    Lin, Bo
    Yang, Guidong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2024, 342
  • [13] Report Highly efficient and highly selective CO2 reduction to CO driven by laser
    Yan, Bo
    Li, Yinwu
    Cao, Weiwei
    Zeng, Zhiping
    Liu, Pu
    Ke, Zhuofeng
    Yang, Guowei
    JOULE, 2022, 6 (12) : 2735 - 2744
  • [14] Reduction of CO2 to ethylene at three-phase interface effects of electrode substrate and catalytic coating
    Ogura, K
    Oohara, R
    Kudo, Y
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) : D213 - D219
  • [15] Three-Phase CO2 Flow in a Basalt Fracture Network
    Gierzynski, Alec O.
    Pollyea, Ryan M.
    WATER RESOURCES RESEARCH, 2017, 53 (11) : 8980 - 8998
  • [17] Reduction of CO2 to ethanol over a tin-based tandem electrocatalyst
    Huang, Yanqiang
    Liu, Bin
    NATURE ENERGY, 2023, 8 (12) : 1317 - 1318
  • [18] Highly selective Cu-In catalyst for electrochemical reduction of CO2 to CO
    Jedidi, Abdesslem
    Rasul, Shahid
    Takanabe, Kazuhiro
    Cavallo, Luigi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [19] Efficient three-phase electrocatalytic CO2 reduction to formate on superhydrophobic Bi-C interfaces
    Jiang, Yifan
    Zhang, Xiaodong
    Xu, Dafu
    Li, Wenzhang
    Liu, Min
    Qiu, Xiaoqing
    CHEMICAL COMMUNICATIONS, 2021, 57 (49) : 6011 - 6014
  • [20] Selective Electroreduction of CO2 to Ethanol via Cobalt-Copper Tandem Catalysts
    Chala, Soressa Abera
    Liu, Rongji
    Oseghe, Ekemena O.
    Clausing, Simon T.
    Kampf, Christopher
    Bansmann, Joachim
    Clark, Adam H.
    Zhou, Yazhou
    Lieberwirth, Ingo
    Biskupek, Johannes
    Kaiser, Ute
    Streb, Carsten
    ACS Catalysis, 2024, 14 (20) : 15553 - 15564