Augmenting machine learning of Grad-Shafranov equilibrium reconstruction with Green's functions

被引:1
|
作者
McClenaghan, J. [1 ]
Akcay, C. [1 ]
Amara, T. B. [1 ]
Sun, X. [2 ]
Madireddy, S. [3 ]
Lao, L. L. [1 ]
Kruger, S. E. [4 ]
Meneghini, O. M. [1 ]
机构
[1] Gen Atom, POB 85608, San Diego, CA 92186 USA
[2] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA
[3] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA
[4] Tech X Corp, 5621 Arapahoe Ave, Boulder, CO 80303 USA
关键词
PARAMETERS;
D O I
10.1063/5.0213625
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work presents a method for predicting plasma equilibria in tokamak fusion experiments and reactors. The approach involves representing the plasma current as a linear combination of basis functions using principal component analysis of plasma toroidal current densities (J(t)) from the EFIT-AI equilibrium database. Then utilizing EFIT's Green's function tables, basis functions are created for the poloidal flux ( psi) and diagnostics generated from the toroidal current (J(t)). Similar to the idea of a physics-informed neural network (NN), this physically enforces consistency between psi, J(t), and the synthetic diagnostics. First, the predictive capability of a least squares technique to minimize the error on the synthetic diagnostics is employed. The results show that the method achieves high accuracy in predicting psi and moderate accuracy in predicting J(t) with median R-2 = 0.9993 and R-2 = 0.978, respectively. A comprehensive NN using a network architecture search is also employed to predict the coefficients of the basis functions. The NN demonstrates significantly better performance compared to the least squares method with median R-2 = 0.9997 and 0.9916 for J(t) and psi, respectively. The robustness of the method is evaluated by handling missing or incorrect data through the least squares filling of missing data, which shows that the NN prediction remains strong even with a reduced number of diagnostics. Additionally, the method is tested on plasmas outside of the training range showing reasonable results.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Grad-Shafranov Reconstruction: Overview and Improvement of the Numerical Solution Used in Space Physics
    A. Ojeda González
    M. O. Domingues
    O. Mendes
    M. K. Kaibara
    A. Prestes
    Brazilian Journal of Physics, 2015, 45 : 493 - 509
  • [22] Effect of Electron Pressure on the Grad-Shafranov Reconstruction of Interplanetary Coronal Mass Ejections
    Hu, Qiang
    Farrugia, C. J.
    Osherovich, V. A.
    Mostl, C.
    Szabo, A.
    Ogilvie, K. W.
    Lepping, R. P.
    SOLAR PHYSICS, 2013, 284 (01) : 275 - 291
  • [23] Grad-Shafranov Reconstruction: Overview and Improvement of the Numerical Solution Used in Space Physics
    Ojeda Gonzalez, A.
    Domingues, M. O.
    Mendes, O.
    Kaibara, M. K.
    Prestes, A.
    BRAZILIAN JOURNAL OF PHYSICS, 2015, 45 (05) : 493 - 509
  • [24] Implementing Faraday effect measurement constraints into the Grad-Shafranov equilibrium fitting code EFIT
    Benedett, T. E.
    Chen, J.
    Brower, D. L.
    Yoneda, R.
    Lao, L. L.
    McClenaghan, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (01):
  • [25] Study of the plasma equilibrium in Damavand tokamak via numerical solution of the Grad-Shafranov equation
    Harzchi, M.
    Alinejad, N.
    Yousefi, H. Farid
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 : B80 - B86
  • [26] VARIATIONAL MOMENT SOLUTIONS OF THE GRAD-SHAFRANOV (G-S) EQUATION
    LAO, LL
    HIRSHMAN, SP
    WIELAND, RM
    SIGMAR, DJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 847 - 847
  • [27] Solving the Grad-Shafranov equation using spectral elements for tokamak equilibrium with toroidal rotation?
    Li, Haolong
    Zhu, Ping
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 260
  • [28] The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: Method Development and Benchmark Studies
    Hu, Qiang
    SOLAR PHYSICS, 2017, 292 (09)
  • [29] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
    Huang, Yao
    Xiao, Bing-Jia
    Luo, Zheng-Ping
    CHINESE PHYSICS B, 2017, 26 (08)
  • [30] Optimized Grad-Shafranov Reconstruction of a Magnetic Cloud Using STEREO-Wind Observations
    Moestl, C.
    Farrugia, C. J.
    Biernat, H. K.
    Leitner, M.
    Kilpua, E. K. J.
    Galvin, A. B.
    Luhmann, J. G.
    SOLAR PHYSICS, 2009, 256 (1-2) : 427 - 441