Predicting Football Match Results Using a Poisson Regression Model

被引:0
|
作者
Loukas, Konstantinos [1 ]
Karapiperis, Dimitrios [2 ]
Feretzakis, Georgios [1 ]
Verykios, Vassilios S. [1 ]
机构
[1] Hellenic Open Univ, Sch Sci & Technol, Patras 26335, Greece
[2] Int Hellenic Univ, Sch Sci & Technol, Thermi 57001, Greece
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 16期
关键词
data analytics; sports analytics; predictive modeling; statistical analysis; Poisson distribution; Poisson regression;
D O I
10.3390/app14167230
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Currently, several techniques based on probabilities and statistics, along with the rapid advancements in computational power, have deepened our understanding of a football match result, giving us the capability to estimate future matches' results based on past performances. The ability to estimate the number of goals scored by each team in a football match has revolutionized the perspective of a match result for both betting market professionals and fans alike. The Poisson distribution has been widely used in a number of studies to model the number of goals a team is likely to score in a football match. Therefore, the match result can be estimated using a double Poisson regression model-one for each participating team. In this study, we propose an algorithm, which, by using Poisson distributions along with football teams' historical performance, is able to predict future football matches' results. This algorithm has been developed based on the Premier League's-England's top-flight football championship-results from the 2022-2023 season.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Predicting sewing thread consumption for lockstitch using regression model
    Midha, VIinay Kumar
    Sharma, Shailja
    Gupta, Vaibhav
    [J]. RESEARCH JOURNAL OF TEXTILE AND APPAREL, 2016, 20 (03) : 155 - 163
  • [42] Predicting strength of concrete using Sclerometer - reliability of the regression model
    Khan, S. R. M.
    Noorzaei, J.
    Kadir, M. R. A.
    Jaafar, M. S.
    Thanoon, W. A. M.
    [J]. INNOVATIONS IN STRUCTURAL ENGINEERING AND CONSTRUCTION, VOLS 1 AND 2, 2008, : 1129 - +
  • [43] Statistical Modeling for Mortality Data Using Local Generalized Poisson Regression Model
    Astuti, Erni Tri
    Budiantara, I. Nyoman
    Sunaryo, Sony
    Dokhi, M.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 33 (03): : 92 - 101
  • [44] Penalized Poisson Regression Model using adaptive modified Elastic Net Penalty
    Algamal, Zakariya Yahya
    Lee, Muhammad Hisyam
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2015, 8 (02) : 236 - 245
  • [45] Statistical modeling for mortality data using local generalized poisson regression model
    Astuti, Erni Tri
    Budiantara, I Nyoman
    Sunaryo, Sony
    Dokhi, M.
    [J]. International Journal of Applied Mathematics and Statistics, 2013, 33 (03): : 92 - 101
  • [46] Testing approaches for overdispersion in Poisson regression versus the generalized Poisson model
    Yang, Zhao
    Hardin, James W.
    Addy, Cheryl L.
    Vuong, Quang H.
    [J]. BIOMETRICAL JOURNAL, 2007, 49 (04) : 565 - 584
  • [47] Point and interval estimation of the population size using the truncated Poisson regression model
    van der Heijden, PGM
    Bustami, R
    Cruyff, MJLF
    Engbersen, G
    van Houwelingen, HC
    [J]. STATISTICAL MODELLING, 2003, 3 (04) : 305 - 322
  • [48] Modeling The Number of Flood Occurrence in Indonesia in 2015 Using Poisson Regression Model
    Febiyani, Okky Savitri
    Wardhani, Laksmi Prita
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION, 2019, 1218
  • [49] Forecasting Tennis Match Results Using the Bradley-Terry Model
    Fayomi, Aisha
    Majeed, Rizwana
    Algarni, Ali
    Akhtar, Sohail
    Jamal, Farrukh
    Nasir, Jamal Abdul
    [J]. INTERNATIONAL JOURNAL OF PHOTOENERGY, 2022, 2022
  • [50] A Review on Football Match Outcome Prediction using Bayesian Networks
    Razali, Nazim
    Mustapha, Aida
    Utama, Sunariya
    Din, Roshidi
    [J]. 1ST INTERNATIONAL CONFERENCE ON COMPUTING, TECHNOLOGY, SCIENCE AND MANAGEMENT IN SPORTS (ICOTSM) 2017, 2018, 1020