Edge AI-Driven Air Quality Monitoring and Notification System: A Multilocation Campus Perspective

被引:0
|
作者
Wijaya, Chandra [1 ,2 ]
Andriyadi, Anggi [1 ,3 ]
Chen, Shi-Yan [4 ]
Wang, I-Jan [1 ]
Yang, Chao-Tung [4 ,5 ]
机构
[1] Tunghai Univ, Dept Ind Engn & Enterprise Informat, Taichung 407224, Taiwan
[2] Parahyangan Catholic Univ, Informat Dept, Bandung 40141, West Java, Indonesia
[3] Informat & Bussiness Inst Darmajaya, Bandar Lampung 35141, Lampung, Indonesia
[4] Tunghai Univ, Dept Comp Sci, Taichung 407224, Taiwan
[5] Tunghai Univ, Res Ctr Smart Sustainable Circular Econ, Taichung 407224, Taiwan
关键词
edge ai; air quality monitoring; multinode iot sensors; notification delivery api;
D O I
10.1007/978-3-031-64766-6_25
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With a growing emphasis on environmental health and safety, monitoring and managing air quality in large-scale settings such as campuses are becoming increasingly critical. This research proposes an innovative approach that integrates multilocation Internet of Things (IoT) sensors, edge artificial intelligence (AI), machine learning, and public API integration to create a comprehensive air quality monitoring and notification system for campus environments. Our framework deploys IoT sensors across various locations within the campus to collect real-time data on air quality parameters. Leveraging edge AI capabilities, these sensors process data locally, enabling rapid analysis and anomaly detection without the need for centralized processing. Furthermore, machine learning algorithm is used to analyze the collected data, identify patterns, and predict air quality. To enhance user accessibility and engagement, the system use public APIs to deliver notifications and alerts regarding air quality status.
引用
收藏
页码:256 / 261
页数:6
相关论文
共 50 条
  • [21] An AI-Driven System for Identifying Dangerous Driving Vehicles
    Tanaka, Hibiki
    Shimomura, Kazuki
    Tanaka, Naoki
    Ikeda, Makoto
    Barolli, Leonard
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 6, AINA 2024, 2024, 204 : 395 - 400
  • [22] AI-Driven livestock identification and insurance management system
    Ahmad, Munir
    Abbas, Sagheer
    Fatima, Areej
    Ghazal, Taher M.
    Alharbi, Meshal
    Khan, Muhammad Adnan
    Elmitwally, Nouh Sabri
    EGYPTIAN INFORMATICS JOURNAL, 2023, 24 (03)
  • [23] AI-driven approaches for air pollution modelling: A comprehensive systematic review
    Garbagna, Lorenzo
    Saheer, Lakshmi Babu
    Oghaz, Mahdi Maktab Dar
    ENVIRONMENTAL POLLUTION, 2025, 373
  • [24] AI-Driven Permanent Cuttings Monitoring Enables Safer and Faster Drilling
    Ripperger, Georg
    Peisker, Jörg
    Oberschmidleitner, Patrick
    JPT, Journal of Petroleum Technology, 2023, 75 (02): : 65 - 67
  • [25] AI-Driven Runtime Monitoring of Energy Consumption in Autonomous Delivery Drones
    Urban, Moritz
    Aniculaesei, Adina
    Rausch, Andreas
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 4, INTELLISYS 2023, 2024, 825 : 267 - 283
  • [26] AI-Driven Ground Robots: Mobile Edge Computing and mmWave Communications at Work
    Baruffa, Giuseppe
    Detti, Andrea
    Rugini, Luca
    Crocetti, Francesco
    Banelli, Paolo
    Costante, Gabriele
    Valigi, Paolo
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 1 - 16
  • [27] AI-Driven QoS-Aware Scheduling for Serverless Video Analytics at the Edge
    Giagkos, Dimitrios
    Tzenetopoulos, Achilleas
    Masouros, Dimosthenis
    Xydis, Sotirios
    Catthoor, Francky
    Soudris, Dimitrios
    INFORMATION, 2024, 15 (08)
  • [28] The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT)
    Firouzi, Farshad
    Farahani, Bahar
    Marinsek, Alexander
    INFORMATION SYSTEMS, 2022, 107
  • [29] Mobile Air Quality Monitoring in the ITU Campus
    Oktug, Sema Fatma
    Onay, Emre
    Sen, Ece Nur
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [30] Validation of An AI-Driven Treatment Planning System for Adaptive Radiotherapy
    Pryser, E.
    Cai, B.
    Reynoso, F.
    Laugeman, E.
    Henke, L.
    Kim, H.
    Mutic, S.
    Hugo, G.
    MEDICAL PHYSICS, 2020, 47 (06) : E670 - E670