IMAGE RECOGNITION TECHNOLOGY BASED ON DEEP LEARNING IN AUTOMATION CONTROL SYSTEMS

被引:0
|
作者
Wang, Jingjing [1 ]
机构
[1] Jianghai Polytech Coll, Dept Informat Engn, Yangzhou 225000, Jiangsu, Peoples R China
来源
关键词
Supermarket product image recognition; Deep learning; Data annotation algorithm; Non class specific Faster- RCNN;
D O I
10.12694/scpe.v25i5.3138
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In order to solve the problem of recognizing multiple product images, the author proposes the research of image recognition technology based on deep learning in automated control systems. Firstly, the FasterRCNN method is improved by proposing a non class specific FasterRCNN, which can be used for pre annotation of product images by training only on publicly available datasets. Due to the use of position correction networks, the pre annotation effect is more accurate than that of candidate region networks. Then, combining Grab cut with non class specific FasterRCNN, a sample enhancement method was proposed to synthesize a large number of training images containing multiple products and use them for model training. In addition, based on non class specific FasterRCNN, a re identification layer was proposed to improve detection accuracy. In the end, the recognition and positioning of multiple products achieved a recall rate of 93.8% and an accuracy of 96.3%.
引用
收藏
页码:3554 / 3562
页数:9
相关论文
共 50 条
  • [31] Image Recognition of Citrus Diseases Based on Deep Learning
    Liu, Zongshuai
    Xiang, Xuyu
    Qin, Jiaohua
    Ma, YunTan
    Zhang, Qin
    Xiong, Neal N.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 66 (01): : 457 - 466
  • [32] Web Identification Image Recognition Based on Deep Learning
    Zhao, Yanling
    Zhang, Xinchang
    Xu, Mei
    Sun, Zhanquan
    Liu, Guangqi
    Li, Shifeng
    2016 3RD INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2016, : 743 - 747
  • [33] Recyclable waste image recognition based on deep learning
    Zhang, Qiang
    Zhang, Xujuan
    Mu, Xiaojun
    Wang, Zhihe
    Tian, Ran
    Wang, Xiangwen
    Liu, Xueyan
    RESOURCES CONSERVATION AND RECYCLING, 2021, 171
  • [34] Heart Sound Recognition Technology Based on Deep Learning
    Huai, Ximing
    Panote, Siriaraya
    Choi, Dongeun
    Kuwahara, Noriaki
    DIGITAL HUMAN MODELING AND APPLICATIONS IN HEALTH, SAFETY, ERGONOMICS AND RISK MANAGEMENT. POSTURE, MOTION AND HEALTH, DHM 2020, PT I, 2020, 12198 : 491 - 500
  • [35] Rock Crack Recognition Technology Based on Deep Learning
    Li, Jinbei
    Tian, Yu
    Chen, Juan
    Wang, Hao
    SENSORS, 2023, 23 (12)
  • [36] A Study Of Voiceprint Recognition Technology Based on Deep Learning
    Li, Jingyi
    Xu, Qin
    Kadoch, Michel
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 24 - 27
  • [37] Deep Learning-Based Intelligent Image Recognition and Its Applications in Financial Technology Services
    Wang, Qiuwen
    Wang, Pengxiang
    Chang, Yongzhi
    TRAITEMENT DU SIGNAL, 2023, 40 (02) : 735 - 742
  • [38] Developing Forest Road Recognition Technology Using Deep Learning-Based Image Processing
    Lee, Hyeon-Seung
    Kim, Gyun-Hyung
    Ju, Hong Sik
    Mun, Ho-Seong
    Oh, Jae-Heun
    Shin, Beom-Soo
    FORESTS, 2024, 15 (08):
  • [39] Deep Learning-Based Image Recognition Technology for Wind Turbine Blade Surface Defects
    Cao, Zheng
    Wang, Qianming
    International Journal of Advanced Computer Science and Applications, 2024, 15 (09) : 893 - 902
  • [40] Substation Behavior Recognition Technology Based on Deep Learning
    Liu Guoming
    Liang Xiaojiao
    Yu Hui
    Lu Zhixing
    Kang Kai
    Li Tengchang
    Liu Bin
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6228 - 6233