Localized Plasmonic Structured Illumination Microscopy Using Hybrid Inverse Design

被引:2
|
作者
Wu, Qianyi [1 ]
Xu, Yihao [2 ]
Zhao, Junxiang [1 ]
Liu, Yongmin [2 ,3 ]
Liu, Zhaowei [1 ,4 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[4] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Deep learning; Genetic algorithms; Photonicsinverse design; Super-resolution microscopy; Plasmonics; Structured illumination microscopy; ARTIFICIAL-INTELLIGENCE; GENETIC-ALGORITHM; RESOLUTION LIMIT; NANOPHOTONICS; PHOTONICS;
D O I
10.1021/acs.nanolett.4c03069
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Super-resolution fluorescence imaging has offered unprecedented insights and revolutionized our understanding of biology. In particular, localized plasmonic structured illumination microscopy (LPSIM) achieves video-rate super-resolution imaging with similar to 50 nm spatial resolution by leveraging subdiffraction-limited nearfield patterns generated by plasmonic nanoantenna arrays. However, the conventional trial-and-error design process for LPSIM arrays is time-consuming and computationally intensive, limiting the exploration of optimal designs. Here, we propose a hybrid inverse design framework combining deep learning and genetic algorithms to refine LPSIM arrays. A population of designs is evaluated using a trained convolutional neural network, and a multiobjective optimization method optimizes them through iteration and evolution. Simulations demonstrate that the optimized LPSIM substrate surpasses traditional substrates, exhibiting higher reconstruction accuracy, robustness against noise, and increased tolerance for fewer measurements. This framework not only proves the efficacy of inverse design for tailoring LPSIM substrates but also opens avenues for exploring new plasmonic nanostructures in imaging applications.
引用
收藏
页码:11581 / 11589
页数:9
相关论文
共 50 条
  • [31] Structured Illumination Microscopy for Superresolution
    Allen, John R.
    Ross, Stephen T.
    Davidson, Michael W.
    CHEMPHYSCHEM, 2014, 15 (04) : 566 - 576
  • [32] Hybrid structured illumination expansion microscopy reveals microbial cytoskeleton organization
    Vaughan, Joshua
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [33] Metacrystal Structured Illumination Microscopy
    Haug, J.
    Palei, M.
    Shrout, J.
    Narimanov, E.
    Bohn, P.
    Hoffman, A. J.
    2023 IEEE PHOTONICS CONFERENCE, IPC, 2023,
  • [34] Tessellation Structured Illumination Microscopy
    Shterman, Doron
    Eyal, Ori
    Tsesses, Shai
    Bartal, Guy
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [35] Management of the axial modulation of the illumination pattern in structured illumination microscopy using an extended illumination source
    Gimeno-Gomez, Alejandro
    Dajkhosh, Seyedeh Parisa
    Van, Cong Tuan Son
    Barreiro, Juan Carlos
    Preza, Chrysanthe
    Saavedra, Genaro
    OPTICS EXPRESS, 2023, 31 (22) : 36568 - 36589
  • [36] Resolution doubling using confocal microscopy via analogy with structured illumination microscopy
    Hayashi, Shinichi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (08)
  • [37] Profilometry With Enhanced Accuracy Using Differential Structured Illumination Microscopy
    Xie, Zhongye
    Tang, Yan
    Liu, Xi
    Liu, Junbo
    He, Yu
    Hu, Song
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (13) : 1017 - 1020
  • [38] Partial nephrectomy margin imaging using structured illumination microscopy
    Wang, Mei
    Tulman, David B.
    Sholl, Andrew B.
    Mandava, Sree H.
    Maddox, Michael M.
    Lee, Benjamin R.
    Brown, J. Quincy
    JOURNAL OF BIOPHOTONICS, 2018, 11 (03)
  • [39] Image filtering in structured illumination microscopy using the Lukosz bound
    Righolt, Christiaan H.
    Slotman, Johan A.
    Young, Ian T.
    Mai, Sabine
    van Vliet, Lucas J.
    Stallinga, Sjoerd
    OPTICS EXPRESS, 2013, 21 (21): : 24431 - 24451
  • [40] Fast structured illumination microscopy using rolling shutter cameras
    Song, Liyan
    Lu-Walther, Hui-Wen
    Foester, Ronny
    Jost, Aurelie
    Kielhorn, Martin
    Zhou, Jianying
    Heintzmann, Rainer
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (05)