Mungojerrie: Linear-Time Objectives in Model-Free Reinforcement Learning

被引:2
|
作者
Hahn, Ernst Moritz [1 ]
Perez, Mateo [2 ]
Schewe, Sven [3 ]
Somenzi, Fabio [2 ]
Trivedi, Ashutosh [2 ]
Wojtczak, Dominik [3 ]
机构
[1] Univ Twente, Enschede, Netherlands
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Liverpool, Liverpool, Merseyside, England
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
AUTOMATA;
D O I
10.1007/978-3-031-30823-9_27
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Mungojerrie is an extensible tool that provides a frame-work to translate linear-time objectives into reward for reinforcement learning (RL). The tool provides convergent RL algorithms for stochastic games, reference implementations of existing reward translations for omega-regular objectives, and an internal probabilistic model checker for omega-regular objectives. This functionality is modular and operates on shared data structures, which enables fast development of new translation techniques. Mungojerrie supports finite models specified in PRISM and omega-automata specified in the HOA format, with an integrated command line interface to external linear temporal logic translators. Mungojerrie is distributed with a set of benchmarks for omega-regular objectives in RL.
引用
收藏
页码:527 / 545
页数:19
相关论文
共 50 条
  • [41] On Distributed Model-Free Reinforcement Learning Control With Stability Guarantee
    Mukherjee, Sayak
    Vu, Thanh Long
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (05): : 1615 - 1620
  • [42] Model-Free Recurrent Reinforcement Learning for AUV Horizontal Control
    Huo, Yujia
    Li, Yiping
    Feng, Xisheng
    3RD INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTICS ENGINEERING (CACRE 2018), 2018, 428
  • [43] Model-Free Control for Soft Manipulators based on Reinforcement Learning
    You, Xuanke
    Zhang, Yixiao
    Chen, Xiaotong
    Liu, Xinghua
    Wang, Zhanchi
    Jiang, Hao
    Chen, Xiaoping
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2909 - 2915
  • [44] Model-Free Reinforcement Learning with the Decision-Estimation Coefficient
    Foster, Dylan J.
    Golowich, Noah
    Qian, Jian
    Rakhlin, Alexander
    Sekhari, Ayush
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [45] Safe Reinforcement Learning via a Model-Free Safety Certifier
    Modares, Amir
    Sadati, Nasser
    Esmaeili, Babak
    Yaghmaie, Farnaz Adib
    Modares, Hamidreza
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3302 - 3311
  • [46] On Distributed Model-Free Reinforcement Learning Control with Stability Guarantee
    Mukherjee, Sayak
    Thanh Long Vu
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2175 - 2180
  • [47] Model-Free Emergency Frequency Control Based on Reinforcement Learning
    Chen, Chunyu
    Cui, Mingjian
    Li, Fangxing
    Yin, Shengfei
    Wang, Xinan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (04) : 2336 - 2346
  • [48] Model-Free Reinforcement Learning for Branching Markov Decision Processes
    Hahn, Ernst Moritz
    Perez, Mateo
    Schewe, Sven
    Somenzi, Fabio
    Trivedi, Ashutosh
    Wojtczak, Dominik
    COMPUTER AIDED VERIFICATION, PT II, CAV 2021, 2021, 12760 : 651 - 673
  • [49] Plume Tracing via Model-Free Reinforcement Learning Method
    Hu, Hangkai
    Song, Shiji
    Chen, C. L. Phillip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (08) : 2515 - 2527
  • [50] Model-free reinforcement learning from expert demonstrations: a survey
    Jorge Ramírez
    Wen Yu
    Adolfo Perrusquía
    Artificial Intelligence Review, 2022, 55 : 3213 - 3241