Multi-response characterization of ultra-thin strip rolling process-machine learning approach

被引:0
|
作者
Dantuluri, Narendra Varma [1 ]
Grandhi, Manohar [1 ]
Chodagam, Lakshmi Poornima [2 ]
Chalamalasetti, Srinivasa Rao [1 ]
机构
[1] Andhra Univ Coll Engn, Dept Mech Engn, Visakhapatnam, India
[2] Sir CR Reddy Coll Engn, Dept Mech Engn, Eluru, India
关键词
Ultra-thin strip rolling; Machine learning; Gaussian process regression; Gradient boosting regressor; K-fold cross validation; ABAQUS; NEPER;
D O I
10.1007/s12008-024-02092-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The prediction of machining parameters attracted more researchers and industrial quality experts due to the accurate optimizations with the developing techniques every second. The present paper involves multi-response characterization of the Roll Force, von Mises Stress and PEEQ (Equivalent Plastic Strain) i.e., output responses with the aid of input parameters viz., percentage reduction, Coefficient of friction (COF) and Roll Speed in Ultra-Thin Strip rolling using Machine Learning (ML) models. The aim of this research is to train the machine learning framework to predict the output responses through fivefold cross validation and hyper parameter optimization. The research focuses on a hybrid approach i.e., experimental results are fed to ABAQUS and to the Machine learning framework. The simulations generally take 20-40 h based on the input parameters. As the ML framework is integrated, the prediction time is reduced to 17 s, which is superior to any mathematical approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] MrIML: Multi-response interpretable machine learning to model genomic landscapes
    Fountain-Jones, Nicholas M.
    Kozakiewicz, Christopher P.
    Forester, Brenna R.
    Landguth, Erin L.
    Carver, Scott
    Charleston, Michael
    Gagne, Roderick B.
    Greenwell, Brandon
    Kraberger, Simona
    Trumbo, Daryl R.
    Mayer, Michael
    Clark, Nicholas J.
    Machado, Gustavo
    MOLECULAR ECOLOGY RESOURCES, 2021, 21 (08) : 2766 - 2781
  • [22] Development and characterization of 193nm ultra-thin resist process
    Amblard, G
    Peters, R
    Cobb, J
    Edamatsu, K
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XIX, PTS 1 AND 2, 2002, 4690 : 287 - 298
  • [23] Ultra-thin, multi-layered polyamide membranes: Synthesis and characterization
    Song, Xiaoxiao
    Qi, Saren
    Tang, Chuyang Y.
    Gao, Congjie
    JOURNAL OF MEMBRANE SCIENCE, 2017, 540 : 10 - 18
  • [24] Effect of Pulsed Current Treatment on Microstructure and Properties of 304 Stainless Steel Ultra-Thin Strip after Rolling
    Liu, Qi
    Fan, Wanwan
    Ren, Zhongkai
    Wang, Tao
    Huang, Qingxue
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2024, 37 (01)
  • [25] Effect of Pulsed Current Treatment on Microstructure and Properties of 304 Stainless Steel Ultra-Thin Strip after Rolling
    Qi Liu
    Wanwan Fan
    Zhongkai Ren
    Tao Wang
    Qingxue Huang
    Chinese Journal of Mechanical Engineering, 2024, 37 (06) : 604 - 615
  • [26] Iterative Convergence for Solving the Exit Plastic Zone and Friction Coefficient Model of Ultra-thin Strip Rolling Force
    Zhang, Jie
    Wang, Tao
    Wang, Zhenhua
    Liu, Xiao
    ISIJ INTERNATIONAL, 2024, 64 (13) : 1899 - 1908
  • [27] Ultra-Thin Chips for Flexible Electronics Process Technology, Characterization, Assembly and Applications
    Burghartz, J. N.
    Angelopoulos, E.
    Appel, W.
    Endler, S.
    Ferwana, S.
    Harendt, C.
    Hassan, M. -U.
    Rempp, H.
    Richter, H.
    Zimmermann, M.
    2013 IEEE INTERNATIONAL CONFERENCE OF ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2013,
  • [28] Process-machine interactions and a multi-sensor fusion approach to predict surface roughness in cylindrical plunge grinding process
    Botcha, Bhaskar
    Rajagopal, Vairamuthu
    Babu, Ramesh N.
    Bukkapatnam, Satish T. S.
    46TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 46, 2018, 26 : 700 - 711
  • [29] Multi-faceted modelling for strip breakage in cold rolling using machine learning
    Chen, Zheyuan
    Liu, Ying
    Valera-Medina, Agustin
    Robinson, Fiona
    Packianather, Michael
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (21) : 6347 - 6360
  • [30] Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method
    张燕燕
    程然
    倪东
    田明
    卢继武
    赵毅
    Chinese Physics B, 2019, (07) : 503 - 507