Multi-response characterization of ultra-thin strip rolling process-machine learning approach

被引:0
|
作者
Dantuluri, Narendra Varma [1 ]
Grandhi, Manohar [1 ]
Chodagam, Lakshmi Poornima [2 ]
Chalamalasetti, Srinivasa Rao [1 ]
机构
[1] Andhra Univ Coll Engn, Dept Mech Engn, Visakhapatnam, India
[2] Sir CR Reddy Coll Engn, Dept Mech Engn, Eluru, India
关键词
Ultra-thin strip rolling; Machine learning; Gaussian process regression; Gradient boosting regressor; K-fold cross validation; ABAQUS; NEPER;
D O I
10.1007/s12008-024-02092-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The prediction of machining parameters attracted more researchers and industrial quality experts due to the accurate optimizations with the developing techniques every second. The present paper involves multi-response characterization of the Roll Force, von Mises Stress and PEEQ (Equivalent Plastic Strain) i.e., output responses with the aid of input parameters viz., percentage reduction, Coefficient of friction (COF) and Roll Speed in Ultra-Thin Strip rolling using Machine Learning (ML) models. The aim of this research is to train the machine learning framework to predict the output responses through fivefold cross validation and hyper parameter optimization. The research focuses on a hybrid approach i.e., experimental results are fed to ABAQUS and to the Machine learning framework. The simulations generally take 20-40 h based on the input parameters. As the ML framework is integrated, the prediction time is reduced to 17 s, which is superior to any mathematical approach.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The Study on Deformation Characterization in Micro Rolling for Ultra-thin Strip
    Xie, H. B.
    Manabe, K.
    Furushima, T.
    Jiang, Z. Y.
    NUMISHEET 2014: THE 9TH INTERNATIONAL CONFERENCE AND WORKSHOP ON NUMERICAL SIMULATION OF 3D SHEET METAL FORMING PROCESSES: PART A BENCHMARK PROBLEMS AND RESULTS AND PART B GENERAL PAPERS, 2013, 1567 : 888 - 891
  • [2] Research on Rolling Process and Technical Equipment of Special Alloy Strip with Ultra-thin Thickness
    Liu S.
    Li J.
    Liu Y.
    Ji J.
    Xie W.
    Dou F.
    Liu J.
    Liu Y.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2024, 60 (04): : 357 - 368
  • [3] An experimental and numerical investigation on micro rolling for ultra-thin strip
    Xie, H. B.
    Manabe, K.
    Furushima, T.
    Tada, K.
    Jiang, Z. Y.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2016, 9 (03) : 405 - 412
  • [4] An experimental and numerical investigation on micro rolling for ultra-thin strip
    H. B. Xie
    K. Manabe
    T. Furushima
    K. Tada
    Z. Y. Jiang
    International Journal of Material Forming, 2016, 9 : 405 - 412
  • [5] Theoretical and experimental study on the producible rolling thickness in ultra-thin strip rolling
    Liu, Xiao
    Xiao, Hong
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2020, 278 (278)
  • [6] Generalized approach for multi-response machining process optimization using machine learning and evolutionary algorithms
    Ghosh, Tamal
    Martinsen, Kristian
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (03): : 650 - 663
  • [7] Research Progress and Prospects of Precision Ultra-thin Strip Rolling Theory
    Ren Z.
    Guo X.
    Fan W.
    Wang T.
    Xiong X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2020, 56 (12): : 73 - 84
  • [8] New mechanism describing the limiting producible thickness in ultra-thin strip rolling
    Xiao, Hong
    Ren, Zhongkai
    Liu, Xiao
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 133 : 788 - 793
  • [9] New mill stand with flexible crown control for rolling ultra-thin hot strip
    Bobig, Paolo
    Borsi, Roberto
    Rotti, Massimo
    MPT Metallurgical Plant and Technology International, 1999, 22 (03):
  • [10] Characterization of Ultra-Thin Silicon Strip Detectors for Hadrontherapy Beam Monitoring
    Bouterfa, Mohamed
    Aouadi, Khaled
    Flandre, Denis
    Gil, Eduardo Cortina
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 1088 - 1091