Determination of the Optimum Architecture of Additively Manufactured Magnetic Bioactive Glass Scaffolds for Bone Tissue Engineering and Drug-Delivery Applications

被引:0
|
作者
Vishwakarma, Ashok [1 ]
Sinha, Niraj [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mech Engn, Kanpur 208016, India
来源
ACS APPLIED BIO MATERIALS | 2024年 / 7卷 / 10期
关键词
magnetic bioactive glass; scaffolds; material-extrusionadditive manufacturing; bone tissue engineering; drug delivery; IN-VITRO; PERMEABILITY; HYPERTHERMIA; CERAMICS; STRENGTH; INGROWTH; SIZE;
D O I
10.1021/acsabm.4c00995
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For better bone regeneration, precise control over the architecture of the scaffolds is necessary. Because the shape of the pore may affect the bone regeneration, therefore, additive manufacturing has been used in this study to fabricate magnetic bioactive glass (MBG) scaffolds with three different architectures, namely, grid, gyroid, and Schwarz D surface with 15 x 15 x 15 mm(3) dimensions and 70% porosity. These scaffolds have been fabricated using an in-house-developed material-extrusion-based additive manufacturing system. The composition of bioactive glass was selected as 45% SiO2, 20% Na2O, 23% CaO, 6% P2O5, 2.5% B2O3, 1% ZnO, 2% MgO, and 0.5% CaF2 (wt %), and additionally 0.4 wt % of iron carbide nanoparticles were incorporated. Afterward, MBG powder was mixed with a 25% (w/v) Pluronic F-127 solution to prepare a slurry for fabricating scaffolds at 23% relative humidity. The morphological characterization using microcomputed tomography revealed the appropriate pore size distribution and interconnectivity of the scaffolds. The compressive strengths of the fabricated grid, gyroid, and Schwarz D scaffolds were found to be 14.01 +/- 1.01, 10.78 +/- 1.5, and 12.57 +/- 1.2 MPa, respectively. The in vitro study was done by immersing the MBG scaffolds in simulated body fluid for 1, 3, 7, and 14 days. Darcy's law, which describes the flow through porous media, was used to evaluate the permeability of the scaffolds. Furthermore, an anticancer drug (Mitomycin C) was loaded onto these scaffolds, wherein these scaffolds depicted good release behavior. Overall, gyroid-structured scaffolds were found to be the most suitable among the three scaffolds considered in this study for bone tissue engineering and drug-delivery applications.
引用
收藏
页码:6847 / 6864
页数:18
相关论文
共 50 条
  • [41] Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering
    Nikpour, Parisa
    Salimi-Kenari, Hamed
    Fahimipour, Farahnaz
    Rabiee, Sayed Mahmood
    Imani, Mohammad
    Dashtimoghadam, Erfan
    Tayebi, Lobat
    CARBOHYDRATE POLYMERS, 2018, 190 : 281 - 294
  • [42] Alginate-bioactive glass containing Zn and Mg composite scaffolds for bone tissue engineering
    Zamani, Delaram
    Mortarzadeh, Fathollah
    Bizari, Davood
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 137 : 1256 - 1267
  • [43] Modeling of Magnetic Scaffolds as Drug Delivery Platforms for Tissue Engineering and Cancer Therapy
    Lodi, Matteo B.
    Corda, Eleonora M. A.
    Desogus, Francesco
    Fanti, Alessandro
    Mazzarella, Giuseppe
    BIOENGINEERING-BASEL, 2024, 11 (06):
  • [44] Additive Manufacturing of Bioactive Glass and Its Polymer Composites as Bone Tissue Engineering Scaffolds: A Review
    He, Lizhe
    Yin, Jun
    Gao, Xiang
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [45] Bioactive glass and hybrid scaffolds prepared by sol-gel method for bone tissue engineering
    Pereira, MM
    Jones, JR
    Hench, LL
    ADVANCES IN APPLIED CERAMICS, 2005, 104 (01) : 35 - 42
  • [46] Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications
    Peter, Mathew
    Binulal, N. S.
    Soumya, S.
    Nair, S. V.
    Furuike, T.
    Tamura, H.
    Jayakumar, R.
    CARBOHYDRATE POLYMERS, 2010, 79 (02) : 284 - 289
  • [47] Fabrication and characterization of additively manufactured CNT-bioglass composite scaffolds coated with cellulose nanowhiskers for bone tissue engineering
    Kumar, Amit
    Dixit, Kartikeya
    Sinha, Niraj
    CERAMICS INTERNATIONAL, 2023, 49 (11) : 17639 - 17649
  • [48] Vitamin D3 Release from Traditionally and Additively Manufactured Tricalcium Phosphate Bone Tissue Engineering Scaffolds
    Ashley A. Vu
    Susmita Bose
    Annals of Biomedical Engineering, 2020, 48 : 1025 - 1033
  • [49] Vitamin D3 Release from Traditionally and Additively Manufactured Tricalcium Phosphate Bone Tissue Engineering Scaffolds
    Vu, Ashley A.
    Bose, Susmita
    ANNALS OF BIOMEDICAL ENGINEERING, 2020, 48 (03) : 1025 - 1033
  • [50] Recent developments in bioactive ceramic/glass: Preparation and application in tissue engineering and drug delivery
    Hong Z.
    Recent Patents on Materials Science, 2010, 3 (03) : 239 - 257