Local and global solutions on arcs for the Ericksen-Leslie problem in RN

被引:0
|
作者
Barbera, Daniele [1 ]
Georgiev, Vladimir [1 ,2 ,3 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56100 Pisa, Italy
[2] Waseda Univ, Fac Sci & Engn, Tokyo, Japan
[3] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
关键词
energy estimates; Ericksen-Leslie; heat equation; liquid crystals; Stokes equation; NEMATIC LIQUID-CRYSTALS; NAVIER-STOKES; EXISTENCE; REGULARITY; DECAY; FLOW;
D O I
10.1002/mana.202300253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The work deals with the Ericksen-Leslie system for nematic liquid crystals on the space R(N )with N >= 3. In our work, we suppose the initial condition v(0 )stayson an arc connecting two fixed orthogonal vectors on the unit sphere. Thanks to this geometric assumption, we prove through energy a priori estimates the local existence and the global existence for small initial data of a solution u is an element of L-infinity ((0, T); H-s(R-N)), del u is an element of L-2((0, T);H-s(R-N)), del v is an element of L-infinity((0, T);H-s(R-N)), del(2)v is an element of L-2((0, T);H-s(R-N)) for s > N/2 - 1, asking low regularity assumptions on u(0) and v(0)
引用
收藏
页码:3584 / 3624
页数:41
相关论文
共 50 条