Carbon shell derived from bottle waste PET on α-Fe2O3/Fe3O4 heterostructure core as synergetic Fenton-like catalyst for degradation of antibiotics

被引:4
|
作者
Bide, Yasamin [1 ]
Torabian, Zohre [1 ]
机构
[1] Iranian Res Org Sci & Technol IROST, Dept Chem Technol, POB 158153538, Tehran, Iran
关键词
Waste polyethylene terephthalate; Mixed iron oxides; Catalyst; Fenton-like; Antibiotic; OXIDATION; WATER; IRON; FE3O4; NANOCOMPOSITE; COMPOSITES;
D O I
10.1016/j.surfin.2024.104435
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, two approaches to environmental sustainability have been followed including the synthesis of an efficient and easily recyclable catalyst for Fenton-like degradation of antibiotics from water, and the upcycling of waste polyethylene terephthalate (PET) into the value-added product through a feasible procedure. For this purpose, the Fe2O3/Fe3O4 mixture coated by the carbon layer derived from the bottle waste PET was synthesized for boosting the Fe3+/Fe2+ cycle in the Fenton-like reaction. The FeCl3 can act as a catalyst for graphitization process and also the precursor of metal oxide nanoparticles. The catalytic efficiency was evaluated for the degradation reaction of amoxicillin and azithromycin antibiotics. Complete conversion of amoxicillin and azithromycin (15 mg/L) was observed in the presence of 5 mu L of H2O2, at pH=3 for 30 min. Also, the mineralization of amoxicillin and azithromycin was evaluated by TOC analysis, which was obtained as 77 and 89 %, respectively. The high activity of the catalyst can be attributed to the presence of a mixture of iron oxide nanoparticles for the catalysis of Fenton-like reactions and activation of H2O2, as well as the coating of nanoparticles with a carbon layer to stabilize and prevent metal leakage and contamination of the mixture. In addition, due to the good electrical conductivity of carbon layer, it can act as electron donors to enhance Fe3+ reduction.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Synthesis of γ-Fe2O3, Fe3O4 and Copper Doped Fe3O4 Nanoparticles by Sonochemical Method
    Mohanraj, Kannusamy
    Sivakumar, Ganesan
    SAINS MALAYSIANA, 2017, 46 (10): : 1935 - 1942
  • [42] Catalytic Degradation of Phenol and p-Nitrophenol Using Fe3O4/MWCNT Nanocomposites as Heterogeneous Fenton-Like Catalyst
    Tian, Xiaojun
    Liu, Yunfang
    Chi, Weidong
    Wang, Yu
    Yue, Xiuzheng
    Huang, Qigu
    Yu, Changyuan
    WATER AIR AND SOIL POLLUTION, 2017, 228 (08):
  • [43] Fe3O4/MWCNT as a heterogeneous Fenton catalyst: degradation pathways of tetrabromobisphenol A
    Zhou, Lincheng
    Zhang, He
    Ji, Liqin
    Shao, Yanming
    Li, Yanfeng
    RSC ADVANCES, 2014, 4 (47) : 24900 - 24908
  • [44] Magnetic Activated-ATP@ Fe3O4 Nanocomposite as an Efficient Fenton-Like Heterogeneous Catalyst for Degradation of Ethidium Bromide
    Han, Shuwen
    Yu, Hemin
    Yang, Tingting
    Wang, Shengsen
    Wang, Xiaozhi
    SCIENTIFIC REPORTS, 2017, 7
  • [45] Sulfidation modified Fe3O4 nanoparticles as an efficient Fenton-like catalyst for azo dyes degradation at wide pH range
    Tang, Xuekun
    Li, Zishun
    Liu, Kun
    Luo, Xianping
    He, Dongsheng
    Ao, Minlin
    Peng, Qian
    POWDER TECHNOLOGY, 2020, 376 (376) : 42 - 51
  • [46] Catalytic Degradation of Phenol and p-Nitrophenol Using Fe3O4/MWCNT Nanocomposites as Heterogeneous Fenton-Like Catalyst
    Xiaojun Tian
    Yunfang Liu
    Weidong Chi
    Yu Wang
    Xiuzheng Yue
    Qigu Huang
    Changyuan Yu
    Water, Air, & Soil Pollution, 2017, 228
  • [47] Optical and Dielectric Properties of Plasmonic Core-Shell Nanoparticles: Fe2O3/Au and Fe3O4/Au
    Akouibaa, A.
    Masrour, R.
    Jabar, A.
    Benhamou, M.
    Derouiche, A.
    JOURNAL OF CLUSTER SCIENCE, 2022, 33 (05) : 2139 - 2146
  • [48] Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst
    Wan, Zhong
    Wang, Jianlong
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 324 : 653 - 664
  • [49] Magnetic α-Fe2O3,γ-Fe2O3 and Fe3O4 Prepared by Facile Calcination from K4[Fe(CN)6]
    李国平
    吴梅华
    李飞明
    翁文
    结构化学, 2015, 34 (12) : 1935 - 1938
  • [50] Transformation of α-Fe2O3 to Fe3O4 Realized by Mechanochemical Reaction of α-Fe2O3 and SrCO3
    Wang, Haizhu
    He, Qiang
    Yao, Bin
    Wen, Gehui
    Wang, Fang
    Xu, Ying
    Li, Yue
    Li, Jichao
    Zhou, Chenbin
    Wang, Jie
    Li, Guodong
    Shan, Liang
    Chen, Jian
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2012, 43 (06): : 1574 - 1578