Evaluation of Sulphur Dioxide Hourly Prediction Using Long Short-term Memory for Summer and Winter Season

被引:0
|
作者
Bennis, Mohammed [1 ]
Mohamed, Youssfi [1 ]
El Morabet, Rachida [2 ]
Alsubih, Majed [3 ]
Prayanagat, Muneer [4 ]
Khan, Roohul Abad [3 ]
机构
[1] Univ Hassan II Casablanca, 21ACS Lab, ENSET Mohammedia, Casablanca, Morocco
[2] Hassan II Univ Casablanca, LADES Lab, FLSH M, Mohammadia, Morocco
[3] King Khalid Univ, Dept Civil Engn, Abha, Saudi Arabia
[4] King Khalid Univ, Dept Elect Engn, Abha, Saudi Arabia
来源
关键词
sulphur dioxide; machine learning; long short-term memory; mean absolute error; root mean square error; NEURAL-NETWORK;
D O I
10.54740/ros.2024.031
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Increasing air pollution has necessitated the prediction of pollutants over time. Deterministic, statistical, and machine-learning methods have been adopted to predict and forecast pollutant levels. It aids in planning and adopting measures to overcome the adverse effects of air pollution. This study employs long short-term memory (LSTM). This study used the hourly data from a meteorological station in a low-town area, Mohammedia City, Morocco. The model prediction accuracy was evaluated based on hourly, weekly, and seasonal (summer and winter) readings for the summer and winter of 2019, 2020 and 2021. Root mean square error (RMSE), mean absolute error (MAE) and mean arctangent absolute percentage error (MAAPE) were calculated to evaluate the accuracy of the developed LSTM model. The MAE value of 0.026 was observed to be less in winter than 0.029 during summer in 2019. Also, it was observed that MAE values decreased from Year 2019-2021, indicating increased prediction accuracy. MAAPE also observed a similar trend. However, RMSE values indicated the opposite for 2019 and 2020; in 2021, the RMSE value was 0.21 for summer and 0.14 for winter for hourly readings. Based on the error calculation, the study found weekly hourly readings were the most accurate for predicting SO2 2 concentration. Also, the LSTM model was more accurate in predicting winter SO2 2 concentration than in the summer season. Further studies must incorporate local incidences affecting the SO2 2 concentration into the LSTM model to increase its accuracy.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 50 条
  • [31] Prompt gamma emission prediction using a long short-term memory network
    Xiao, Fan
    Radonic, Domagoj
    Kriechbaum, Michael
    Wahl, Niklas
    Neishabouri, Ahmad
    Delopoulos, Nikolaos
    Parodi, Katia
    Corradini, Stefanie
    Belka, Claus
    Kurz, Christopher
    Landry, Guillaume
    Dedes, George
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (23):
  • [32] Tailings Pond Risk Prediction Using Long Short-Term Memory Networks
    Li, Jianwei
    Chen, Haoyu
    Zhou, Ting
    Li, Xiaowen
    IEEE ACCESS, 2019, 7 : 182527 - 182537
  • [33] Adaptive Failure Prediction Using Long Short-term Memory in Optical Network
    Zhang, Chunyu
    Wang, Minghui
    Zhang, Min
    Wang, Danshi
    Song, Chuang
    Guan, Luyao
    Liu, Zhuo
    2019 24TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC) AND 2019 INTERNATIONAL CONFERENCE ON PHOTONICS IN SWITCHING AND COMPUTING (PSC), 2019,
  • [34] Spectrum Usage Analysis And Prediction using Long Short-Term Memory Networks
    Ghosh, Anneswa
    Van der Merwe, Jacobus
    Kasera, Sneha Kumar
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, ICDCN 2023, 2023, : 270 - 279
  • [35] Location Prediction of Sperm Cells Using Long Short-Term Memory Networks
    Noy, Lioz
    Barnea, Itay
    Dudaie, Matan
    Kamber, Dotan
    Levi, Mattan
    Shaked, Natan T.
    ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (09)
  • [36] Aircraft Trajectory Prediction Using Deep Long Short-Term Memory Networks
    Zhao, Ziyu
    Zeng, Weili
    Quan, Zhibin
    Chen, Mengfei
    Yang, Zhao
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 124 - 135
  • [37] Rabies Outbreak Prediction Using Deep Learning with Long Short-Term Memory
    Saleh, Abdulrazak Yahya
    Medang, Shahrulnizam Anak
    Ibrahim, Ashraf Osman
    EMERGING TRENDS IN INTELLIGENT COMPUTING AND INFORMATICS: DATA SCIENCE, INTELLIGENT INFORMATION SYSTEMS AND SMART COMPUTING, 2020, 1073 : 330 - 340
  • [38] Sepsis Deterioration Prediction Using Channelled Long Short-Term Memory Networks
    Svenson, Peter
    Haralabopoulos, Giannis
    Torres, Mercedes Torres
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 359 - 370
  • [39] Prediction of groundwater levels using a long short-term memory (LSTM) technique
    Thakur, Abhinav
    Chandel, Abhishish
    Shankar, Vijay
    JOURNAL OF HYDROINFORMATICS, 2024, 27 (01) : 51 - 68
  • [40] Diabetes Prediction Using Bi-directional Long Short-Term Memory
    Jaiswal S.
    Gupta P.
    SN Computer Science, 4 (4)