Ground State Homoclinic Solutions for Damped Vibration Systems with Periodicity

被引:0
|
作者
Timoumi, Mohsen [1 ]
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5000, Tunisia
关键词
Damped vibration systems; Ground state homoclinic solutions; Periodic potentials; Variational methods; Concentration compactness principle; 2ND-ORDER HAMILTONIAN-SYSTEMS; ORBITS; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s12591-024-00696-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following periodic damped vibration system u<spacing diaeresis>+q(t)u(center dot)-L(t)u+del W(t,u)=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \ddot{u}+q(t){\dot{u}}-L(t)u+\nabla W(t,u)=0. \end{aligned}$$\end{document}Using variational methods and a version of the concentration compactness principle, we study the existence of ground state homoclinic solutions for this system under two different classes of superquadratic conditions weaker than the ones known in the literature. To the best of our knowledge, there has been no work focused in this case.
引用
收藏
页码:333 / 354
页数:22
相关论文
共 50 条