Precision diagnosis of myelodysplastic syndromes using integrated genomic and clinical data: A machine learning approach

被引:0
|
作者
Fajar, R. [1 ]
Elfiany, S. [2 ]
Putri, S. [3 ]
机构
[1] Yogyakarta State Univ, Computat Biol & Med Lab, Depok, Indonesia
[2] Bulukumba Muhammadiyah Univ, Computat Sci Lab, Bulukumba, Indonesia
[3] Int Univ Semen Indonesia, Hlth Management Lab, Gresik, Indonesia
关键词
D O I
10.1016/j.cca.2024.118089
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
P1551
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Assessing karyotype precision by microarray-based comparative genomic hybridization in the myelodysplastic/myeloproliferative syndromes
    Slovak, Marilyn L.
    Smith, David D.
    Bedell, Victoria
    Hsu, Ya-Hsuan
    O'Donnell, Margaret
    Forman, Stephen J.
    Gaal, Karl
    McDaniel, Lisa
    Schultz, Roger
    Ballif, Blake C.
    Shaffer, Lisa G.
    MOLECULAR CYTOGENETICS, 2010, 3
  • [42] Assessing karyotype precision by microarray-based comparative genomic hybridization in the myelodysplastic/myeloproliferative syndromes
    Marilyn L Slovak
    David D Smith
    Victoria Bedell
    Ya-Hsuan Hsu
    Margaret O'Donnell
    Stephen J Forman
    Karl Gaal
    Lisa McDaniel
    Roger Schultz
    Blake C Ballif
    Lisa G Shaffer
    Molecular Cytogenetics, 3
  • [43] Machine Learning and Personalized Modeling for Diagnosis of Acute GvHD: an Integrated Approach
    Fiasche, Maurizio
    Cuzzola, Maria
    Fedele, Roberta
    Iacopino, Pasquale
    Morabito, Francesco C.
    NEURAL NETS WIRN10, 2011, 226 : 252 - 259
  • [44] Diabetes Disease Diagnosis Using Machine Learning Approach
    Goyal, Sonali
    Batra, Neera
    Chhabra, Kritika
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1, 2023, 473 : 229 - 237
  • [45] Integrated Analysis of Whole Genome and Epigenome Data Using Machine Learning Technology: Toward the Establishment of Precision Oncology
    Asada, Ken
    Kaneko, Syuzo
    Takasawa, Ken
    Machino, Hidenori
    Takahashi, Satoshi
    Shinkai, Norio
    Shimoyama, Ryo
    Komatsu, Masaaki
    Hamamoto, Ryuji
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [46] Classification and Personalized Prognostic Assessment on the Basis of Clinical and Genomic Features in Myelodysplastic Syndromes
    Bersanelli, Matteo
    Travaglino, Erica
    Meggendorfer, Manja
    Matteuzzi, Tommaso
    Sala, Claudia
    Mosca, Ettore
    Chiereghin, Chiara
    Di Nanni, Noemi
    Gnocchi, Matteo
    Zampini, Matteo
    Rossi, Marianna
    Maggioni, Giulia
    Termanini, Alberto
    Angelucci, Emanuele
    Bernardi, Massimo
    Borin, Lorenza
    Bruno, Benedetto
    Bonifazi, Francesca
    Santini, Valeria
    Bacigalupo, Andrea
    Voso, Maria Teresa
    Oliva, Esther
    Riva, Marta
    Ubezio, Marta
    Morabito, Lucio
    Campagna, Alessia
    Saitta, Claudia
    Savevski, Victor
    Giampieri, Enrico
    Remondini, Daniel
    Passamonti, Francesco
    Ciceri, Fabio
    Bolli, Niccolo
    Rambaldi, Alessandro
    Kern, Wolfgang
    Kordasti, Shahram
    Sole, Francesc
    Palomo, Laura
    Sanz, Guillermo
    Santoro, Armando
    Platzbecker, Uwe
    Fenaux, Pierre
    Milanesi, Luciano
    Haferlach, Torsten
    Castellani, Gastone
    Della Porta, Matteo G.
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (11) : 1223 - +
  • [47] Improving the diagnosis of thyroid cancer by machine learning and clinical data
    Nan Miles Xi
    Lin Wang
    Chuanjia Yang
    Scientific Reports, 12
  • [48] Automated differential diagnosis of dementia syndromes using FDG PET and machine learning
    Perovnik, Matej
    Vo, An
    Nguyen, Nha
    Jamsek, Jan
    Rus, Tomaz
    Tang, Chris C. C.
    Trost, Maja
    Eidelberg, David
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [49] Machine Learning Approach to Understand Real-World Treatment in Patients with Higher-Risk Myelodysplastic Syndromes
    Priya, Vandana
    Vaidya, Vivek P.
    Agrawal, Smita
    Singh, Neeraj
    Chatra, Kaveri
    Parmar, Dhaval
    Yan, Raymond
    Das, Rahul K.
    Haririfar, Mahnoush
    McMahon, Peter
    Williamson, Mellissa
    Sadek, Islam
    Hogea, Cosmina
    BLOOD, 2023, 142
  • [50] A MACHINE LEARNING MODEL TO FACILITATE PATIENTLEVEL RISK SCREENING IN MYELODYSPLASTIC SYNDROMES (MDS) PATIENTS IN ROUTINE CLINICAL PRACTICE
    Vaidya, V.
    Priya, V
    Parmar, D.
    Yan, R.
    Das, R.
    Haririfar, M.
    McMahon, P.
    Williamson, M.
    Hogea, C.
    VALUE IN HEALTH, 2023, 26 (12) : S514 - S514