Wildlife surveillance using deep learning methods

被引:50
|
作者
Chen, Ruilong [1 ]
Little, Ruth [2 ]
Mihaylova, Lyudmila [1 ]
Delahay, Richard [3 ]
Cox, Ruth [3 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, England
[2] Univ Sheffield, Dept Geog, Sheffield, S Yorkshire, England
[3] Anim & Plant Hlth Agcy, Natl Wildlife Management Ctr, Woodchester Pk, Glos, England
来源
ECOLOGY AND EVOLUTION | 2019年 / 9卷 / 17期
关键词
automatic image recognition; bovine tuberculosis; convolutional neural networks; deep learning; wildlife monitoring; BADGERS MELES-MELES; BOVINE TUBERCULOSIS; MYCOBACTERIUM-BOVIS; TRANSMISSION; BEHAVIOR; BIOSECURITY; CATTLE; BAITS;
D O I
10.1002/ece3.5410
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Wildlife conservation and the management of human-wildlife conflicts require cost-effective methods of monitoring wild animal behavior. Still and video camera surveillance can generate enormous quantities of data, which is laborious and expensive to screen for the species of interest. In the present study, we describe a state-of-the-art, deep learning approach for automatically identifying and isolating species-specific activity from still images and video data. We used a dataset consisting of 8,368 images of wild and domestic animals in farm buildings, and we developed an approach firstly to distinguish badgers from other species (binary classification) and secondly to distinguish each of six animal species (multiclassification). We focused on binary classification of badgers first because such a tool would be relevant to efforts to manage Mycobacterium bovis (the cause of bovine tuberculosis) transmission between badgers and cattle. We used two deep learning frameworks for automatic image recognition. They achieved high accuracies, in the order of 98.05% for binary classification and 90.32% for multiclassification. Based on the deep learning framework, a detection process was also developed for identifying animals of interest in video footage, which to our knowledge is the first application for this purpose. The algorithms developed here have wide applications in wildlife monitoring where large quantities of visual data require screening for certain species.
引用
收藏
页码:9453 / 9466
页数:14
相关论文
共 50 条
  • [41] Autonomous pedestrian detection for crowd surveillance using deep learning framework
    Thakur, Narina
    Nagrath, Preeti
    Jain, Rachna
    Saini, Dharmender
    Sharma, Nitika
    Hemanth, D. Jude
    SOFT COMPUTING, 2023, 27 (14) : 9383 - 9399
  • [42] A deep learning approach to trespassing detection using video surveillance data
    Bashir, Muzammil
    Rundensteiner, Elke A.
    Absan, Ramona
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3535 - 3544
  • [43] Prediction of Epidimic Outbreak using Deep Learning Methods
    Kiran, Chintala Ram Sai
    Naveen, Chinthoti
    Kumar, Digumarthi Anil
    Saiteja, Thotakura
    Karthikeyan, C.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 995 - 1000
  • [44] Automatic Identification of Glaucoma Using Deep Learning Methods
    Cerentini, Allan
    Welfer, Daniel
    d'Ornellas, Marcos Cordeiro
    Pereira Haygert, Carlos Jesus
    Dotto, Gustavo Nogara
    MEDINFO 2017: PRECISION HEALTHCARE THROUGH INFORMATICS, 2017, 245 : 318 - 321
  • [45] Splash Detection in Fish Plants Surveillance Videos Using Deep Learning
    Jovanovic, Vedran
    Svendsen, Eirik
    Risojevic, Vladimir
    Babic, Zdenka
    2018 14TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2018,
  • [46] Surveillance of high-yield processes using deep learning models
    Ibrahim, Musaddiq
    Zhang, Chunxia
    Mahmood, Tahir
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (08) : 4365 - 4393
  • [47] Using Deep Learning for Profitable Concrete Forecasting Methods
    Al-Hinawi, Ayat
    Alelaimat, Radwan
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2024, 21 (05) : 832 - 843
  • [48] Persian Document Classification Using Deep Learning Methods
    Davari, Nafiseh
    Mahdian, Mahya
    Akhavanpour, Alireza
    Daneshpour, Negin
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 526 - 530
  • [49] Detection of Birds in the Wild using Deep Learning Methods
    Datar, Prathamesh
    Jain, Kashish
    Dhedhi, Bhavin
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [50] Review of Semantic Segmentation by Using Deep learning methods
    Rajeswari, B.
    Ram, J. Mani
    Kumar, D. V. T. Praveen
    Harshith, K. L. V. V.
    2024 INTERNATIONAL CONFERENCE ON SOCIAL AND SUSTAINABLE INNOVATIONS IN TECHNOLOGY AND ENGINEERING, SASI-ITE 2024, 2024, : 272 - 277