Towards a classification of permutation binomials of the form xi + ax over F2n

被引:0
|
作者
Li, Yi [1 ,2 ]
Feng, Xiutao [1 ]
Wang, Qiang [3 ]
机构
[1] Chinese Acad Sci, Key Lab Math Mechanizat, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
Permutation binomials; Classification; Hermite's criterion; The AGW criterion; FINITE-FIELDS; DIGITAL-SIGNATURES; POLYNOMIALS; TRINOMIALS;
D O I
10.1007/s10623-024-01462-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Permutation polynomials with few terms (especially permutation binomials) attract manypeople due to their simple algebraic structure. Despite the great interests in the study of per-mutation binomials, a complete characterization of permutation binomials is still unknown.Let q=2(n) for a positive integern. In this paper, we start classifying permutation binomialsof the form x(i)+ax over F-q in terms of their indices. After carrying out an exhaustive searchof these permutation binomials over F-2n fornup to 12, we gave three new infinite classes of permutation binomials over F-q(2),F-q(3),and F-q(4) respectively, for q=2(n) with arbitrary positiveintegern. In particular, these binomials over F-q(3) have relatively large index (q2+q+1)(3).Asanapplication, we can completely explain all the permutation binomials of the form x(i)+ax over F-2(n) for n <= 8. Moreover, we prove that there does not exist permutation binomials of the form x(2 q3+2q2+2q+3+)ax over F-q(4) such that a is an element of F-q4* and n=2 m with m >= 2.
引用
收藏
页码:3859 / 3875
页数:17
相关论文
共 50 条
  • [11] Two new permutation polynomials with the form (x2k + x plus δ)s + x over F2n
    Zeng, Xiangyong
    Zhu, Xishun
    Hu, Lei
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2010, 21 (02) : 145 - 150
  • [12] Towards factoring in SL(2, F2n)
    Petit, Christophe
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 71 (03) : 409 - 431
  • [13] Antiderivative functions over F2n
    Suder, Valentin
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 82 (1-2) : 435 - 447
  • [14] Orthomorphic Permutation Polynomials of Degree 2d+1 over Finite Field F2n
    Guo, Jiangjiang
    Zheng, Haoran
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 2283 - 2287
  • [15] MAXIMAL COMPLETE PERMUTATIONS OVER F2n
    Xu, Xiaofang
    Li, Lisha
    Chen, Bing
    Zeng, Xiangyong
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 1083 - 1109
  • [16] Permutation binomials of the form xr(xq-1 + a) over Fqe
    Masuda, Ariane M.
    Rubio, Ivelisse M.
    Santiago, Javier
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 79
  • [17] Involutions Over the Galois Field F2n
    Charpin, Pascale
    Mesnager, Sihem
    Sarkar, Sumanta
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (04) : 2266 - 2276
  • [18] The c-differential uniformity and boomerang uniformity of three classes of permutation polynomials over F2n
    Liu, Qian
    Huang, Zhiwei
    Xie, Jianrui
    Liu, Ximeng
    Zou, Jian
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [19] PSL(2, 2n)-extensions over F2n
    Ledet, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (01): : 113 - 116
  • [20] A note on a class of quadratic permutations over F2n
    Laigle-Chapuy, Yann
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 130 - +