Differential Model-Based Parameter Estimation of IPMSMs From Multi-State Measurements

被引:0
|
作者
Cheng, Hongfu [1 ]
Deshpande, Uday [2 ]
Kar, Narayan C. [1 ]
机构
[1] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada
[2] D&V Elect Ltd, Woodbridge, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Torque; Parameter estimation; Accuracy; Estimation; Couplings; Mathematical models; Steady-state; Differential model; interior permanent magnet synchronous machines (IPMSMs); least square algorithm; magnetic saturation; parameter estimation; voltage source inverter (VSI) nonlinearity; MULTIPARAMETER ESTIMATION; PMSM; VSI;
D O I
10.1109/TMAG.2024.3413539
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate parameter estimations are essential for efficient operation and high performance of interior permanent magnet synchronous machines (IPMSMs). Voltage source inverter (VSI) nonlinearity can adversely affect parameter estimation in IPMSM drive systems. Cross influence can compromise the accuracy of parameter estimation. This article proposes a differential model-based decoupling scheme to eliminate VSI nonlinearity effects and cross influence for accurately estimating key IPMSM parameters, including permanent magnet (PM) flux linkage, winding resistance, and machine inductances. The adverse effect of measurement noise and observational error on parameter estimation can be reduced in the proposed differential model. Utilizing the decoupling scheme, each parameter is estimated individually with high efficiency and accuracy leveraging the least square algorithm. The proposed differential model-based decoupling scheme is particularly well-suited for accurately estimating parameters over a wide speed range and diverse load conditions. The estimated parameters can improve the accuracy of predicting electromagnetic torque. Furthermore, the proposed method is noninvasive, robust, and does not require extra signal injection.
引用
收藏
页码:1 / 1
页数:6
相关论文
共 50 条
  • [21] STATE-SPACE MODEL-BASED PARAMETER-ESTIMATION METHODS AND SOME APPLICATIONS
    RAO, BD
    ADVANCED ALGORITHMS AND ARCHITECTURES FOR SIGNAL PROCESSING IV, 1989, 1152 : 257 - 264
  • [22] Reliability estimation of a multi-state system
    School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
    Beijing Hangkong Hangtian Daxue Xuebao, 2007, 8 (968-971):
  • [23] Sensorless and On-line Parameter Estimation with Model Predictive Control of IPMSMs
    Bui, M. X.
    Le Khac Thuy
    Xiao, D.
    Rahman, M. F.
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [24] Model-based experimental screening for DOC parameter estimation
    Lundberg, Bjorn
    Sjoblom, Jonas
    Johansson, Asa
    Westerberg, Bjorn
    Creaser, Derek
    COMPUTERS & CHEMICAL ENGINEERING, 2015, 74 : 144 - 157
  • [25] Vehicle parameter estimation using a model-based estimator
    Reina, Giulio
    Paiano, Matilde
    Blanco-Claraco, Jose-Luis
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 87 : 227 - 241
  • [26] Parameter Estimation and Performance Bounds for Radiometric Model-based Non-contact Temperature Measurements
    Exel, Dominik
    Zagar, Bernhard
    Schuster, Stefan
    Ganglberger, Vera
    Reisinger, Johann
    2017 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2017, : 641 - 646
  • [27] A multi-state model for hypertension
    Chen, Tony Hsiu-Hsi
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2007, 122 : 19 - 19
  • [28] A parameter estimation method for a condition-monitored device under multi-state deterioration
    Moghaddass, Ramin
    Zuo, Ming J.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 106 : 94 - 103
  • [29] Li-ion battery charging strategy based on multi-state joint estimation model
    Kang, Zehao
    Lu, Chenlei
    Hu, Haoqin
    Huang, Yin
    Mao, Xuping
    Xuan, Dongji
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [30] An online model-based battery parameter and state estimation method using multi-scale dual adaptive particle filters
    Ye, Min
    Guo, Hui
    Xiong, Rui
    Mu, Hao
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105