FINITE-DIMENSIONALITY OF ATTRACTORS FOR WAVE EQUATIONS WITH DEGENERATE NONLOCAL DAMPING

被引:1
|
作者
Tang, Zhijun [1 ]
Yan, Senlin [1 ]
Xu, Yao [2 ]
Zhong, Chengkui [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Wave equations; degenerate nonlocal damping; global attractors; fractal dimension; Strichartz estimates; GLOBAL ATTRACTORS; P-LAPLACIAN; EVOLUTION-EQUATIONS; DYNAMICS; BEHAVIOR;
D O I
10.3934/dcds.2024091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the fractal dimension of global attractors for a class of wave equations with (single-point) degenerate nonlocal damping. Both the equation and its linearization degenerate into linear wave equations at the degenerate point, and the usual approaches to calculate the dimension of the entirety of attractors do not work directly. Instead, we develop a new process concerning the dimension near the degenerate point individually and show the finite dimensionality of the attractor.
引用
收藏
页码:219 / 247
页数:29
相关论文
共 50 条
  • [21] A condition for asymptotic finite-dimensionality of an operator semigroup
    K. V. Storozhuk
    Siberian Mathematical Journal, 2011, 52 : 1104 - 1107
  • [22] Global attractors of the degenerate fractional Kirchhoff wave equation with structural damping or strong damping
    Yang, Wenhua
    Zhou, Jun
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 993 - 1029
  • [23] Uniform attractors for nonautonomous wave equations with Nonlinear damping
    Sun, Chunyou
    Cao, Daomin
    Duan, Jinqiao
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (02): : 293 - 318
  • [24] Smooth attractors for the quintic wave equations with fractional damping
    Savostianov, Anton
    Zelik, Sergey
    ASYMPTOTIC ANALYSIS, 2014, 87 (3-4) : 191 - 221
  • [25] Exponential stability for the wave equation with degenerate nonlocal weak damping
    Marcelo M. Cavalcanti
    Valeria N. Domingos Cavalcanti
    Marcio A. Jorge Silva
    Claudete M. Webler
    Israel Journal of Mathematics, 2017, 219 : 189 - 213
  • [26] EXPONENTIAL STABILITY FOR THE WAVE EQUATION WITH DEGENERATE NONLOCAL WEAK DAMPING
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Jorge Silva, Marcio A.
    Webler, Claudete M.
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 219 (01) : 189 - 213
  • [27] Strong semisimplicity and finite-dimensionality in Ambrose algebras
    Haralampidou, Marina
    FUNCTION SPACES, 2007, 435 : 191 - 198
  • [28] Exponential Attractors for the Sup-Cubic Wave Equation with Nonlocal Damping
    Zhou, Feng
    Sun, Ziying
    Zhu, Kaixuan
    Mei, Xinyu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [29] Stability for degenerate wave equations with drift under simultaneous degenerate damping
    Akil, Mohammad
    Fragnelli, Genni
    Issa, Ibtissam
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 416 : 1178 - 1221
  • [30] THEOREMS ON FINITE-DIMENSIONALITY OF COHOMOLOGY GROUPS .3.
    KAWAI, T
    PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (04): : 243 - 246