THE STRONG π-SYLOW THEOREM FOR THE GROUPS PSL2(q)

被引:0
|
作者
Revin, D. O. [1 ]
Shepelev, V. D. [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
pi-Sylow theorem; strong pi-Sylow theorem; projective special linear group;
D O I
10.1134/S0037446624050173
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be a set of primes. A finite group G is a pi-group if all prime divisors of the order of G belong to pi. Following Wielandt, the pi-Sylow theorem holds for G if all maximal pi-subgroups of G are conjugate; if the pi-Sylow theorem holds for every subgroup of G then the strong pi-Sylow theorem holds for G. The strong pi-Sylow theorem is known to hold for G if and only if it holds for every nonabelian composition factor of G. In 1979, Wielandt asked which finite simple nonabelian groups obey the strong pi-Sylow theorem. By now the answer is known for sporadic and alternating groups. We give some arithmetic criterion for the validity of the strong pi-Sylow theorem for the groups PSL2(q).
引用
收藏
页码:1187 / 1194
页数:8
相关论文
共 50 条
  • [41] Commutators, commensurators, and PSL2(Z)
    Koberda, Thomas
    Mj, Mahan
    JOURNAL OF TOPOLOGY, 2021, 14 (03) : 861 - 876
  • [42] A note on the recognition of PSL2(p)
    Jia, Songfang
    Chen, Yanheng
    Li, Jinbao
    SCIENCEASIA, 2022, 48 (02): : 237 - 239
  • [43] SYMMETRIC 1-DESIGNS FROM PSL2(q), FOR q A POWER OF AN ODD PRIME
    Mbaale, Xavier
    Rodrigues, Bernardo G.
    TRANSACTIONS ON COMBINATORICS, 2021, 10 (01) : 43 - 61
  • [44] Deformations of reducible representations of 3-manifold groups into PSL2( C)
    Heusener, Michael
    Porti, Joan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 : 965 - 997
  • [45] A PSL2 (C) Casson invariant
    Curtis, CL
    Geometry and Topology of Manifolds, 2005, 47 : 51 - 61
  • [46] Surface symmetries and PSL2(p)
    Ozaydin, Murad
    Simmons, Charlotte
    Taback, Jennifer
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) : 2243 - 2268
  • [47] HURWITZ EXTENSIONS BY PSL2(7)
    COHEN, JM
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1979, 86 (NOV) : 395 - 400
  • [48] The variety of characters in PSL2(C)
    Heusener, M
    Porti, J
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2004, 10 : 221 - 237
  • [49] INTRODUCTION TO PSL2 PHASE TROPICALIZATION
    Shkolnikov, Mikhail
    Petrov, Peter
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2024, 77 (10): : 1425 - 1432
  • [50] PSL2(59) is a subgroup of the Monster
    Holmes, PE
    Wilson, RA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 141 - 152