Fostering nanoscience's strategies: A new frontier in sustainable crop improvement for abiotic stress tolerance

被引:9
|
作者
Mohapatra, Biswajit [1 ]
Chamoli, Shivangi [2 ]
Salvi, Prafull [3 ]
Saxena, Saurabh C. [1 ]
机构
[1] Cent Univ Haryana, Dept Biochem, Mahendergarh 123031, Haryana, India
[2] Graph Era Univ, Dept Biotechnol, Dehra Dun 248002, Uttarakhand, India
[3] Natl Agrifood Biotechnol Inst, Agribiotechnol Dept, Mohali 140306, Punjab, India
来源
PLANT NANO BIOLOGY | 2023年 / 3卷
关键词
Abiotic stressors; Nanoparticles; Stress resilience; Plant growth and development; CERIUM OXIDE NANOPARTICLES; SOLANUM-LYCOPERSICON L; NANO-ANATASE TIO2; ORYZA-SATIVA L; PLANT-GROWTH; SILVER NANOPARTICLES; SILICON NANOPARTICLES; DROUGHT STRESS; SALT STRESS; ARABIDOPSIS-THALIANA;
D O I
10.1016/j.plana.2023.100026
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Advanced nano-engineering is a convenient technology to attain food security and ensure sustainable agricultural yield and productivity. In addition to addressing the yield barrier, the application of nanoscience emphasizes its potential through innovations such as precision farming, site-targeted delivery of agrochemicals, disease control, and mitigation of environmental stresses in plants. Abiotic stresses negatively influence growth and yield of plants by affecting the physiological, biochemical, and molecular aspects of plants. As seen in recent years, such precedents in plants can be significantly alleviated through the implementation of nanoparticles. The application of nanoparticles helps in understanding the appropriate mechanisms in plants against abiotic stresses and enhances those responses more effectively. Biochemical and physiological adaptations stimulated by nanoparticles include the activation of the antioxidative defense system, stress regulatory gene expressions, stimulation of crucial biochemical pathways, and hormonal regulations. Considering the potential advantages of nanomaterials to date, their full implementation is yet to be a reality in the agricultural sector, largely limited due to concerns regarding the uptake, translocation, bioavailability, and eco-toxicity of nanoparticles. Understanding the underlying mechanisms and responses induced by nanoparticles through molecular approaches is critical in assessing nanomaterials' biological potential. The present review addresses the possible scope of nanotechnology to counter abiotic stress in economically important crops, and their influence on development, growth, absorption, and translocation in plants. Here, an attempt is made to provide an elucidative framework on recent findings related to nanoparticle-induced stress tolerance in plants through a comprehensive insight into molecular mechanisms and biochemical responses that may help to meet the need for adaptive measures in crops during abiotic stress conditions.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Priming with Nanoscale Materials for Boosting Abiotic Stress Tolerance in Crop Plants
    Amritha, M. S.
    Sridharan, Kishore
    Puthur, Jos T.
    Dhankher, Om Parkash
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (35) : 10017 - 10035
  • [32] Potential Role of Vermicompost in Abiotic Stress Tolerance of Crop Plants: a Review
    Muhammad Danish Toor
    Rıdvan Kizilkaya
    Izhar Ullah
    Lyubka Koleva
    Abdul Basit
    Heba I. Mohamed
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 4765 - 4787
  • [33] Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites
    Godoy, Francisca
    Olivos-Hernandez, Karina
    Stange, Claudia
    Handford, Michael
    PLANTS-BASEL, 2021, 10 (02): : 1 - 19
  • [34] Soybean steroids improve crop abiotic stress tolerance and increase yield
    Yu, Tai-Fei
    Hou, Ze-Hao
    Wang, Hai-Long
    Chang, Shi-Yang
    Song, Xin-Yuan
    Zheng, Wei-Jun
    Zheng, Lei
    Wei, Ji-Tong
    Lu, Zhi-Wei
    Chen, Jun
    Zhou, Yong-Bin
    Chen, Ming
    Sun, Su-Li
    Jiang, Qi-Yan
    Jin, Long-Guo
    Ma, You-Zhi
    Xu, Zhao-Shi
    PLANT BIOTECHNOLOGY JOURNAL, 2024, 22 (08) : 2333 - 2347
  • [35] Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability
    Michael V. Mickelbart
    Paul M. Hasegawa
    Julia Bailey-Serres
    Nature Reviews Genetics, 2015, 16 : 237 - 251
  • [36] Superoxide dismutase-mentor of abiotic stress tolerance in crop plants
    Gill, Sarvajeet Singh
    Anjum, Naser A.
    Gill, Ritu
    Yadav, Sandeep
    Hasanuzzaman, Mirza
    Fujita, Masayuki
    Mishra, Panchanand
    Sabat, Surendra C.
    Tuteja, Narendra
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (14) : 10375 - 10394
  • [37] Potential Role of Vermicompost in Abiotic Stress Tolerance of Crop Plants: a Review
    Toor, Muhammad Danish
    Kizilkaya, Ridvan
    Ullah, Izhar
    Koleva, Lyubka
    Basit, Abdul
    Mohamed, Heba I.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (04) : 4765 - 4787
  • [38] Exploring the genomics of abiotic stress tolerance and crop resilience to climate change
    Varshney, Rajeev K.
    Barmukh, Rutwik
    Bentley, Alison
    Nguyen, Henry T.
    PLANT GENOME, 2024,
  • [39] Editorial: Biostimulants as an Avenue of Abiotic Stress Tolerance Improvement in Crops
    Shukla, Pushp Sheel
    Yadav, Narendra Singh
    Critchley, Alan T.
    Prithiviraj, Balakrishnan
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2022, 6
  • [40] Genome editing for improvement of biotic and abiotic stress tolerance in cereals
    Inam, Safeena
    Muhammad, Amna
    Irum, Samra
    Rehman, Nazia
    Riaz, Aamir
    Uzair, Muhammad
    Khan, Muhammad Ramzan
    FUNCTIONAL PLANT BIOLOGY, 2024, 51 (09)