HERMITE INTERPOLATION OF TYPE TOTAL DEGREE ASSOCIATED WITH CERTAIN SPACES OF POLYNOMIALS

被引:0
|
作者
Le Ngoc Cuong [1 ]
Ta Thi Thanh Mai [2 ]
Phung Van Manh [3 ]
机构
[1] Thuongmai Univ, Dept Math, 79 Ho Tung Mau St, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, 1 Dai Co Viet St, Hanoi, Vietnam
[3] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy St, Hanoi, Vietnam
关键词
Hermite interpolation; Hermite interpolation of type total degree; interpolation by homogeneous polynomials; MULTIVARIATE; CONTINUITY; POINTS;
D O I
10.1515/ms-2024-0009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hermite interpolation for the space of polynomials of total degree in R-N and the space of homogeneous polynomials in RN+1. We investigate the relations between the two types of Hermite interpolation. We show that they have the same regularity and continuity property. (c) 2024 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [31] Exploring Hermite interpolation polynomials using recursion
    Vajda, Robert
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 45 : 151 - 160
  • [32] Interpolation Hermite Polynomials For Finite Element Method
    Gusev, Alexander
    Vinitsky, Sergue
    Chuluunbaatar, Ochbadrakh
    Chuluunbaatar, Galmandakh
    Gerdt, Vladimir
    Derbov, Vladimir
    Gozdz, Andrzej
    Krassovitskiy, Pavel
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2017 (MMCP 2017), 2018, 173
  • [33] Hermite Interpolation Polynomials on Parallelepipeds and FEM Applications
    Gusev, Alexander A.
    Chuluunbaatar, Galmandakh
    Chuluunbaatar, Ochbadrakh
    Vinitsky, Sergue I.
    Blinkov, Yuri A.
    Deveikis, Algirdas
    Hess, Peter O.
    Hai, Luong Le
    MATHEMATICS IN COMPUTER SCIENCE, 2023, 17 (3-4)
  • [34] TABLES OF ZEROS + GAUSSIAN WEIGHTS OF CERTAIN ASSOCIATED LAGUERRE POLYNOMIALS + RELATED GENERALIZED HERMITE POLYNOMIALS
    SHAO, TS
    FRANK, RM
    CHEN, TC
    MATHEMATICS OF COMPUTATION, 1964, 18 (88) : 598 - &
  • [35] ON THE ORDER OF MAGNITUDE OF FUNDAMENTAL POLYNOMIALS OF HERMITE INTERPOLATION
    SZABADOS, J
    ACTA MATHEMATICA HUNGARICA, 1993, 61 (3-4) : 357 - 368
  • [36] A KIND OF HERMITE-FEJER INTERPOLATION POLYNOMIALS
    XU, YA
    KEXUE TONGBAO, 1984, 29 (09): : 1272 - 1273
  • [37] Multivariate Hermite interpolation by algebraic polynomials: A survey
    Lorentz, RA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 122 (1-2) : 167 - 201
  • [38] Interpolation properties of Hermite-Pade polynomials
    Suetin, S. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (03) : 543 - 545
  • [39] ON CONVERGENCE OF HERMITE-FEJER INTERPOLATION POLYNOMIALS
    KNOOP, HB
    ZHOU, XL
    JOURNAL OF APPROXIMATION THEORY, 1995, 81 (01) : 23 - 37
  • [40] Hermite Interpolation Polynomials on Parallelepipeds and FEM Applications
    Alexander A. Gusev
    Galmandakh Chuluunbaatar
    Ochbadrakh Chuluunbaatar
    Sergue I. Vinitsky
    Yuri A. Blinkov
    Algirdas Deveikis
    Peter O. Hess
    Luong Le Hai
    Mathematics in Computer Science, 2023, 17