Single-cell somatic copy number alteration profiling of vitreous humor seeds in retinoblastoma

被引:0
|
作者
Sirivolu, Shreya [1 ,2 ]
Schmidt, Michael J. [3 ]
Prabakar, Rishvanth K. [3 ]
Kuhn, Peter [3 ,4 ,5 ,6 ,7 ]
Hicks, James [3 ,4 ]
Berry, Jesse L. [1 ,2 ,4 ,5 ]
Xu, Liya [1 ,2 ,3 ]
机构
[1] Childrens Hosp Los Angeles, Vis Ctr, 4650 Sunset Blvd, Los Angeles, CA 90027 USA
[2] Univ Southern Calif, USC Roski Eye Inst, Keck Sch Med, Los Angeles, CA USA
[3] Univ Southern Calif, Convergent Sci Inst Canc, Dornsife Coll Letters Arts & Sci, Michelson Ctr Convergent Biosci, Los Angeles, CA USA
[4] Univ Southern Calif, Norris Comprehens Canc Ctr, Keck Sch Med, Los Angeles, CA USA
[5] Childrens Hosp Los Angeles, Saban Res Inst, Los Angeles, CA USA
[6] Univ Southern Calif, Viterbi Sch Engn, Dept Biomed Engn, Los Angeles, CA USA
[7] Univ Southern Calif, Viterbi Sch Engn, Dept Aerosp & Mech Engn, Los Angeles, CA USA
关键词
Retinoblastoma; aqueous humor; vitreous humor; liquid biopsy; cell-free DNA; circulating tumor DNA; somatic copy number alteration; precision oncology; AQUEOUS-HUMOR;
D O I
10.1080/13816810.2024.2374886
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background Heterogeneity can impact biomarker identification. Thus, we investigated the somatic copy number alterations (SCNAs) of individual tumor cells in the vitreous humor of a retinoblastoma patient using single-cell whole-genome profiling and explored the genomic concordance among vitreous and aqueous humor, vitreous seeds, and tumor. Methods Aqueous humor (AH), vitreous humor (VH), and tumor biopsy were obtained from an enucleated globe with retinoblastoma and vitreous seeding. Micromanipulation was used to manually isolate 39 live single tumor cells from vitreous seeds harvested from the VH. The SCNA profiles of these individual cells were generated via whole-genome sequencing and analyzed alongside profiles from the tumor mass and cell-free DNA (cfDNA) from AH and VH. Results Heatmap of VH single-cell SCNA profiles demonstrates heterogeneity among individual vitreous seeds with one clearly dominant subclone (23 of 37 cells). The SCNA profiles from the cells in this subclone demonstrate an average concordance of 98% with cfDNA profiles from acellular AH and VH and with the tumor profile. Conclusions Our findings reveal some heterogeneity among single-cell SCNA profiles in individual VH seeds. Despite this heterogeneity, the dominant vitreous subclone exhibits extremely (>98%) high concordance with the SCNA profile from tumor and AH, suggesting AH cfDNA is representative of the dominant genomic subclone. This may facilitate tumoral biomarker identification via the AH. This preliminary work supports the potential of applying single-cell technology to VH seeds in retinoblastoma as a platform to study tumor subclones, which may provide insight into the genomic complexity of disease.
引用
收藏
页码:646 / 649
页数:4
相关论文
共 50 条
  • [21] CopyMix: Mixture model based single-cell clustering and copy number profiling using variational inference
    Safinianaini, Negar
    De Souza, Camila P. E.
    Roth, Andrew
    Koptagel, Hazal
    Toosi, Hosein
    Lagergren, Jens
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 113
  • [22] Single-cell measurement of plasmid copy number and promoter activity
    Shao, Bin
    Rammohan, Jayan
    Anderson, Daniel A.
    Alperovich, Nina
    Ross, David
    Voigt, Christopher A.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [23] Single-cell measurement of plasmid copy number and promoter activity
    Bin Shao
    Jayan Rammohan
    Daniel A. Anderson
    Nina Alperovich
    David Ross
    Christopher A. Voigt
    Nature Communications, 12
  • [24] Single-cell copy number calling and event history reconstruction
    Kuipers, Jack
    Tuncel, Mustafa Anil
    Ferreira, Pedro F.
    Jahn, Katharina
    Beerenwinkel, Niko
    BIOINFORMATICS, 2025, 41 (03)
  • [25] Correlating somatic copy number alteration in aqueous humour cfDNA with chemotherapy history, eye salvage and pathological features in retinoblastoma
    Luo, Yingxiu
    Xu, Mingpeng
    Yang, Ludi
    Yao, Yiran
    Berry, Jesse L.
    Xu, Liya
    Wen, Xuyang
    He, Xiaoyu
    Han, Minglei
    Fan, Xianqun
    Fan, Jiayan
    Jia, Renbing
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2024, 108 (03) : 449 - 456
  • [26] Pan-cancer patterns of somatic copy number alteration
    Zack, Travis I.
    Schumacher, Steven E.
    Carter, Scott L.
    Cherniack, Andrew D.
    Saksena, Gordon
    Tabak, Barbara
    Lawrence, Michael S.
    Zhang, Cheng-Zhong
    Wala, Jeremiah
    Mermel, Craig H.
    Sougnez, Carrie
    Gabriel, Stacey B.
    Hernandez, Bryan
    Shen, Hui
    Laird, Peter W.
    Getz, Gad
    Meyerson, Matthew
    Beroukhim, Rameen
    NATURE GENETICS, 2013, 45 (10) : 1134 - U257
  • [27] Pan-cancer patterns of somatic copy number alteration
    Travis I Zack
    Steven E Schumacher
    Scott L Carter
    Andrew D Cherniack
    Gordon Saksena
    Barbara Tabak
    Michael S Lawrence
    Cheng-Zhong Zhang
    Jeremiah Wala
    Craig H Mermel
    Carrie Sougnez
    Stacey B Gabriel
    Bryan Hernandez
    Hui Shen
    Peter W Laird
    Gad Getz
    Matthew Meyerson
    Rameen Beroukhim
    Nature Genetics, 2013, 45 : 1134 - 1140
  • [28] Low-frequency somatic copy number alterations in normal human lymphocytes revealed by large-scale single-cell whole-genome profiling
    Liu, Lu
    Chen, He
    Sun, Cheng
    Zhang, Jianyun
    Wang, Juncheng
    Du, Meijie
    Li, Jie
    Di, Lin
    Shen, Jie
    Geng, Shuang
    Pang, Yuhong
    Luo, Yingying
    Wu, Chen
    Fu, Yusi
    Zheng, Zhe
    Wang, Jianbin
    Huang, Yanyi
    GENOME RESEARCH, 2022, 32 (01) : 44 - 54
  • [29] sciCNV: high-throughput paired profiling of transcriptomes and DNA copy number variations at single-cell resolution
    Mahdipour-Shirayeh, Ali
    Erdmann, Natalie
    Leung-Hagesteijn, Chungyee
    Tiedemann, Rodger E.
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [30] SCONCE: a method for profiling copy number alterations in cancer evolution using single-cell whole genome sequencing
    Hui, Sandra
    Nielsen, Rasmus
    BIOINFORMATICS, 2022, 38 (07) : 1801 - 1808