Flexible joint model for time-to-event and non-Gaussian longitudinal outcomes
被引:0
|
作者:
Doms, Hortense
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20, B-1348 Louvain La Neuve, BelgiumCatholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20, B-1348 Louvain La Neuve, Belgium
Doms, Hortense
[1
]
Lambert, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20, B-1348 Louvain La Neuve, Belgium
Univ Liege, Inst Math, Liege, BelgiumCatholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20, B-1348 Louvain La Neuve, Belgium
Lambert, Philippe
[1
,2
]
论文数: 引用数:
h-index:
机构:
Legrand, Catherine
[1
]
机构:
[1] Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20, B-1348 Louvain La Neuve, Belgium
In medical studies, repeated measurements of biomarkers and time-to-event data are often collected during the follow-up period. To assess the association between these two outcomes, joint models are frequently considered. The most common approach uses a linear mixed model for the longitudinal part and a proportional hazard model for the survival part. The latter assumes a linear relationship between the survival covariates and the log hazard. In this work, we propose an extension allowing the inclusion of nonlinear covariate effects in the survival model using Bayesian penalized B-splines. Our model is valid for non-Gaussian longitudinal responses since we use a generalized linear mixed model for the longitudinal process. A simulation study shows that our method gives good statistical performance and highlights the importance of taking into account the possible nonlinear effects of certain survival covariates. Data from patients with a first progression of glioblastoma are analysed to illustrate the method.
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
Zhou, Xiaoxiao
Kang, Kai
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
Kang, Kai
Kwok, Timothy
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Prince Wales Hosp, Dept Med & Therapeut, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
Kwok, Timothy
Song, Xinyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Hong Kong, Peoples R China
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China
Tang, An-Ming
Peng, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China
Peng, Cheng
Tang, Niansheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China
机构:
Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
Zhou, Xiaoxiao
Song, Xinyuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong 999077, Peoples R ChinaChinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China