ATM and ATR gene editing mediated by CRISPR/Cas9 in Chinese Hamster cells

被引:2
|
作者
Maeda, Junko [1 ]
Chailapakul, Piyawan [1 ]
Kato, Takamitsu A. [1 ]
机构
[1] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA
关键词
ATM; ATR; CRISPR/Cas9; Chinese hamster cells; ATAXIA-TELANGIECTASIA; DNA-DAMAGE; IONIZING-RADIATION; CHROMOSOMAL RADIOSENSITIVITY; SENSITIVITY; MUTANTS; REPLICATION; INDIVIDUALS; REPAIR; IDENTIFICATION;
D O I
10.1016/j.mrfmmm.2024.111871
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Chinese hamster-derived cell lines including Chinese hamster lung fibroblasts (V79) have been used as model somatic cell lines in radiation biology and toxicology research for decades and have been instrumental in advancing our understanding of DNA damage response (DDR) mechanisms. Whereas many mutant lines deficient in DDR genes have been generated more than over decades, several key DDR genes such as ATM and ATR have not been established in the Chinese hamster system. Here, we transfected CRISPR/Cas9 vectors targeting Chinese hamster ATM or ATR into V79 cells and investigated whether the isolated clones had the characteristics reported in human and mouse studies. We obtained two clones of ATM knockout cells containing an insertion or deletions in the targeted locus. The ATM knockouts with no detectable ATM protein expression exhibited increased sensitivity to radiation and DNA double strand break inducing agents, cell cycle checkpoint defects and defective chromatid break repair. These are all characteristics of defective ATM function. Among the obtained ATR cells, which contained mutations in both ATR alleles while maintaining normal levels of ATR protein expression, one clone exhibited hypersensitivity to UV and replication stress agents. In the present study, we successfully established CRISPR-Cas9 derived ATM knockout cells. We couldn't knock out the ATR gene but obtained ATR mutant cells. Our results showed that Chinese hamster origin ATM knockout cells and ATR mutant cells could be useful tools for further research to reveal oncogenic functions and effects of developing anti-cancer therapeutics.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] CRISPR/Cas9 Ribonucleoprotein-mediated Precise Gene Editing by Tube Electroporation
    Ma, Linyuan
    Jang, Lydia
    Chen, Jian
    Song, Jun
    Yang, Dongshan
    Zhang, Jifeng
    Chen, Y. Eugene
    Xu, Jie
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (148):
  • [22] Therapeutic potential of CRISPR/Cas9 mediated in vivo gene editing for primary hyperoxaluria
    Zabaleta, N.
    Barberia, M.
    Zapata-Linares, N.
    Rodriguez, S.
    Olaguee, C.
    Vales, A.
    Abizanda, G.
    Iglesias, E.
    Salido, E.
    Prosper, F.
    Gonzalez-Aseguinolaza, G.
    Rodriguez-Madoz, J. R.
    HUMAN GENE THERAPY, 2016, 27 (11) : A139 - A140
  • [23] CRISPR/Cas9 gene editing for genodermatoses: progress and perspectives
    Naso, Gaetano
    Petrova, Anastasia
    EMERGING TOPICS IN LIFE SCIENCES, 2019, 3 (03) : 313 - 326
  • [24] CRISPR/CAS9 GENE EDITING TO BLOCK MALARIA TRANSMISSION
    Simoes, Maria
    Dong, Yuemei
    Dimopoulos, George
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2018, 99 (04): : 262 - 262
  • [25] CRISPR/Cas9 gene editing therapies for cystic fibrosis
    Graham, Carina
    Hart, Stephen
    EXPERT OPINION ON BIOLOGICAL THERAPY, 2021, 21 (06) : 767 - 780
  • [26] The enhancement of CRISPR/Cas9 gene editing using metformin
    Rollins, Jaedyn L.
    Hall, Raquel M.
    Lemus, Clara J.
    Leisten, Lauren A.
    Johnston, Jennifer M.
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2023, 35
  • [27] CRISPR/CAS9 GENE EDITING APPLICATIONS IN CARDIOVASCULAR DISEASE
    Khouzam, J.
    Khouzam, R.
    Tivakaran, V.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2021, 69 (02) : 423 - 424
  • [28] Delivery methods for CRISPR/Cas9 gene editing in crustaceans
    Xu, Sen
    Pham, Thinh
    Neupane, Swatantra
    MARINE LIFE SCIENCE & TECHNOLOGY, 2020, 2 (01) : 1 - 5
  • [29] Therapeutic gene editing in haematological disorders with CRISPR/Cas9
    Jensen, Trine I.
    Axelgaard, Esben
    Bak, Rasmus O.
    BRITISH JOURNAL OF HAEMATOLOGY, 2019, 185 (05) : 821 - 835
  • [30] Gene editing using CRISPR/Cas9 in neuromuscular disorders
    Gonorazky, H.
    Maani, N.
    Khattak, S.
    Ivakine, Z.
    Cohn, R.
    Dowling, J.
    NEUROMUSCULAR DISORDERS, 2016, 26 : S127 - S127