Robust causal inference for point exposures with missing confounders

被引:0
|
作者
Levis, Alexander W. [1 ]
Mukherjee, Rajarshi [2 ]
Wang, Rui [2 ,3 ,4 ]
Haneuse, Sebastien [2 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[2] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
[3] Harvard Pilgrim Hlth Care Inst, Dept Populat Med, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
关键词
Causal inference; missing data; multiply robust; semiparametric theory; BARIATRIC SURGERY;
D O I
10.1002/cjs.11832
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Large observational databases are often subject to missing data. As such, methods for causal inference must simultaneously handle confounding and missingness; surprisingly little work has been done at this intersection. Motivated by this, we propose an efficient and robust estimator of the causal average treatment effect from cohort studies when confounders are missing at random. The approach is based on a novel factorization of the likelihood that, unlike alternative methods, facilitates flexible modelling of nuisance functions (e.g., with state-of-the-art machine learning methods) while maintaining nominal convergence rates of the final estimators. Simulated data, derived from an electronic health record-based study of the long-term effects of bariatric surgery on weight outcomes, verify the robustness properties of the proposed estimators in finite samples. Our approach may serve as a theoretical benchmark against which ad hoc methods may be assessed. Les grandes bases de donn & eacute;es observationnelles sont souvent confront & eacute;es au probl & egrave;me des donn & eacute;es manquantes. De ce fait, les m & eacute;thodes d'inf & eacute;rence causale doivent g & eacute;rer & agrave; la fois les facteurs de confusion et les donn & eacute;es manquantes, un domaine & eacute;tonnamment peu explor & eacute;. Pour r & eacute;pondre & agrave; ce d & eacute;fi, les auteurs de cet article proposent un estimateur efficace et robuste de l'effet causal moyen du traitement. Cet estimateur est sp & eacute;cialement con & ccedil;u pour les & eacute;tudes de cohortes o & ugrave; les facteurs de confusion sont manquants de mani & egrave;re al & eacute;atoire. L'approche propos & eacute;e s'appuie sur une nouvelle factorisation de la vraisemblance. Contrairement & agrave; d'autres m & eacute;thodes, celle-ci permet de mod & eacute;liser les fonctions de nuisance de mani & egrave;re flexible, notamment gr & acirc;ce & agrave; des techniques avanc & eacute;es d'apprentissage automatique, et ce tout en maintenant les taux de convergence attendus des estimateurs finaux. Des simulations bas & eacute;es sur des dossiers m & eacute;dicaux & eacute;lectroniques concernant les effets & agrave; long terme de la chirurgie bariatrique sur le poids confirment la robustesse des estimateurs dans des & eacute;chantillons finis. Cette approche pourrait servir de r & eacute;f & eacute;rence th & eacute;orique pour & eacute;valuer d'autres m & eacute;thodes ad-hoc.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Handling Missing Data in Instrumental Variable Methods for Causal Inference
    Kennedy, Edward H.
    Mauro, Jacqueline A.
    Daniels, Michael J.
    Burns, Natalie
    Small, Dylan S.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6, 2019, 6 : 125 - 148
  • [32] Bayesian inference for Common cause failure rate based on causal inference with missing data
    Nguyen, H. D.
    Gouno, E.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 197
  • [33] Bayesian jackknife empirical likelihood-based inference for missing data and causal inference
    Chen, Sixia
    Wang, Yuke
    Zhao, Yichuan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024,
  • [34] Robust inference for bivariate point processes
    Ng, ETM
    Cook, RJ
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (03): : 509 - 524
  • [35] Invited Commentary: The Promise and Pitfalls of Causal Inference With Multivariate Environmental Exposures
    Zigler, Corwin M.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2021, 190 (12) : 2658 - 2661
  • [36] Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data
    Wang, Lingfei
    Michoel, Tom
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (08) : e1005703
  • [37] Instrumental Variable Estimation for Causal Inference in Longitudinal Data with Time-Dependent Latent Confounders
    Cheng, Debo
    Xu, Ziqi
    Li, Jiuyong
    Liu, Lin
    Liu, Jixue
    Gao, Wentao
    Le, Thuc Duy
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 10, 2024, : 11480 - 11488
  • [38] Can't see the wood for the trees: confounders, colliders and causal inference - a clinician's approach
    Quint, Jennifer K.
    Minelli, Cosetta
    [J]. THORAX, 2019, 74 (04) : 321 - 322
  • [39] Robust causal inference of drug-drug interactions
    Shu, Di
    Han, Peisong
    Hennessy, Sean
    Miano, Todd A.
    [J]. STATISTICS IN MEDICINE, 2023, 42 (07) : 970 - 992
  • [40] Causal Modeling with Stochastic Confounders
    Vo, Thanh Vinh
    Wei, Pengfei
    Bergsma, Wicher
    Leong, Tze Yun
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130