Multihead-Res-SE Residual Network with Attention for Human Activity Recognition

被引:0
|
作者
Kang, Hongbo [1 ]
Lv, Tailong [1 ]
Yang, Chunjie [1 ]
Wang, Wenqing [1 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Automat, Xian 710100, Peoples R China
关键词
human activity recognition; deep learning; residual block; squeeze-and-excitation module; multichannel CNN; attention mechanism; WEARABLE SENSOR;
D O I
10.3390/electronics13173407
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human activity recognition (HAR) typically uses wearable sensors to identify and analyze the time-series data they collect, enabling recognition of specific actions. As such, HAR is increasingly applied in human-computer interaction, healthcare, and other fields, making accurate and efficient recognition of various human activities. In recent years, deep learning methods have been extensively applied in sensor-based HAR, yielding remarkable results. However, complex HAR research, which involves specific human behaviors in varied contexts, still faces several challenges. To solve these problems, we propose a multi-head neural network based on the attention mechanism. This framework contains three convolutional heads, with each head designed using one-dimensional CNN to extract features from sensory data. The model uses a channel attention module (squeeze-excitation module) to enhance the representational capabilities of convolutional neural networks. We conducted experiments on two publicly available benchmark datasets, UCI-HAR and WISDM, to evaluate our model. The results were satisfactory, with overall recognition accuracies of 96.72% and 97.73% on their respective datasets. The experimental results demonstrate the effectiveness of the network structure for the HAR, which ensures a higher level of accuracy.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Radar Human Activity Recognition with an Attention-Based Deep Learning Network
    Huan, Sha
    Wu, Limei
    Zhang, Man
    Wang, Zhaoyue
    Yang, Chao
    SENSORS, 2023, 23 (06)
  • [42] TCN-attention-HAR: human activity recognition based on attention mechanism time convolutional network
    Wei, Xiong
    Wang, Zifan
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [43] Human Action Recognition in Unconstrained Trimmed Videos Using Residual Attention Network and Joints Path Signature
    Ahmad, Tasweer
    Jin, Lianwen
    Feng, Jialuo
    Tang, Guozhi
    IEEE ACCESS, 2019, 7 : 121212 - 121222
  • [44] AR3D: Attention Residual 3D Network for Human Action Recognition
    Dong, Min
    Fang, Zhenglin
    Li, Yongfa
    Bi, Sheng
    Chen, Jiangcheng
    SENSORS, 2021, 21 (05) : 1 - 15
  • [45] Efficient Residual Neural Network for Human Activity Recognition using WiFi CSI Signals
    Hnoohom, Narit
    Mekruksavanich, Sakorn
    Theeramunkong, Thanaruk
    Jitpattanakul, Anuchit
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION INNOVATIONS, ICIEI 2024, 2024, : 113 - 119
  • [46] Human Activity Recognition Using Deep Residual Convolutional Network Based on Wearable Sensors
    Yu, Xugao
    Al-qaness, Mohammed A. A.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (03) : 1950 - 1958
  • [47] AHNNet: Human Activity Recognition Based on Hybrid Neural Network Combining Attention Mechanism
    Cao Y.
    Li H.
    Duan P.
    Wang F.
    Wang C.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2021, 55 (05): : 123 - 132
  • [48] TAHAR: A Transferable Attention-Based Adversarial Network for Human Activity Recognition with RFID
    Chen, Dinghao
    Yang, Lvqing
    Cao, Hua
    Wang, Qingkai
    Dong, Wensheng
    Yu, Bo
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II, 2023, 14087 : 247 - 259
  • [49] Sensors-based Human Activity Recognition with Convolutional Neural Network and Attention Mechanism
    Zhang, Wenbo
    Zhu, Tao
    Yang, Congmin
    Xiao, Jiyi
    Ning, Huansheng
    PROCEEDINGS OF 2020 IEEE 11TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2020), 2020, : 158 - 162
  • [50] Attention induced multi-head convolutional neural network for human activity recognition
    Khan, Zanobya N.
    Ahmad, Jamil
    APPLIED SOFT COMPUTING, 2021, 110