Neutrons Sensitivity of Deep Reinforcement Learning Policies on EdgeAI Accelerators

被引:1
|
作者
Bodmann, Pablo R. [1 ]
Saveriano, Matteo [2 ]
Kritikakou, Angeliki [3 ]
Rech, Paolo [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Informat Inst, BR-91501970 Porto Alegre, Brazil
[2] Univ Trento, Dept Ind Engn, I-38123 Trento, Italy
[3] INRIA, F-35042 Rennes, France
关键词
Robots; Reliability; Neutrons; Particle beams; Internet; Transient analysis; Task analysis; Artificial intelligence; EdgeAI; reinforcement learning (RL); reliability; ROBOT; SAFETY;
D O I
10.1109/TNS.2024.3387087
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Autonomous robots and their applications are becoming popular in several different fields, including tasks where robots closely interact with humans. Therefore, the reliability of computation must be paramount. In this work, we measure the reliability of Google's Coral Edge tensor processing unit (TPU) executing three deep reinforcement learning (DRL) models through an accelerated neutrons beam. We experimentally collect data that, when scaled to the natural neutron flux, account for more than 5 million years. Based on our extensive evaluation, we quantify and qualify the radiation-induced corruption on the correctness of DRL. Crucially, our data show that the Edge TPU executing DRL has an error rate that is up to 18 times higher the limit imposed by international reliability standards. We found that despite the feedback and intrinsic redundancy of DRL, the propagation of the fault induces the model to fail in the vast majority of cases or the model manages to finish but reports wrong metrics (i.e., speed, final position, and reward). We provide insights on how radiation corrupts the model, on how the fault propagates in the computation, and about the failure characteristic of the controlled robot.
引用
收藏
页码:1480 / 1486
页数:7
相关论文
共 50 条
  • [21] Learning Distributed Cooperative Policies For Security Games via Deep Reinforcement Learning
    Sheikh, Hassam Ullah
    Razghandi, Mina
    Boloni, Ladislau
    2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2019, : 489 - 494
  • [22] Training and Evaluation of Deep Policies Using Reinforcement Learning and Generative Models
    Ghadirzadeh, Ali
    Poklukar, Petra
    Arndt, Karol
    Finn, Chelsea
    Kyrki, Ville
    Kragic, Danica
    Björkman, Mårten
    Journal of Machine Learning Research, 2022, 23
  • [23] Cooperative Deep Reinforcement Learning Policies for Autonomous Navigation in Complex Environments
    Tran, Van Manh
    Kim, Gon-Woo
    IEEE ACCESS, 2024, 12 : 101053 - 101065
  • [24] Formal Verification of Probabilistic Deep Reinforcement Learning Policies with Abstract Training
    Yang, Junfeng
    Zhang, Min
    Chen, Xin
    Li, Qin
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, VMCAI 2025, PT I, 2025, 15529 : 125 - 147
  • [25] Training and Evaluation of Deep Policies Using Reinforcement Learning and Generative Models
    Ghadirzadeh, Ali
    Poklukar, Petra
    Arndt, Karol
    Finn, Chelsea
    Kyrki, Ville
    Kragic, Danica
    Bjorkman, Marten
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [26] Parallelism in Deep Learning Accelerators
    Song, Linghao
    Chen, Fan
    Chen, Yiran
    Li, Hai Helen
    2020 25TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2020, 2020, : 645 - 650
  • [27] Learning Navigation Policies for Mobile Robots in Deep Reinforcement Learning with Random Network Distillation
    Pan, Lifan
    Li, Anyi
    Ma, Jun
    Ji, Jianmin
    2021 5TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE (ICIAI 2021), 2021, : 151 - 157
  • [28] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Morales, Eduardo F.
    Murrieta-Cid, Rafael
    Becerra, Israel
    Esquivel-Basaldua, Marco A.
    INTELLIGENT SERVICE ROBOTICS, 2021, 14 (05) : 773 - 805
  • [29] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Eduardo F. Morales
    Rafael Murrieta-Cid
    Israel Becerra
    Marco A. Esquivel-Basaldua
    Intelligent Service Robotics, 2021, 14 : 773 - 805
  • [30] Learning Curriculum Policies for Reinforcement Learning
    Narvekar, Sanmit
    Stone, Peter
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 25 - 33