Effects of NOx and NH3 on the secondary organic aerosol formation from α-pinene photooxidation

被引:0
|
作者
Zhao, Yingqi [1 ,2 ]
Zhang, Zhaoyan [1 ,2 ]
Zhao, Ya [1 ]
Wang, Chong [3 ,4 ]
Xie, Hua [1 ]
Yang, Jiayue [1 ]
Zhang, Weiqing [1 ]
Wu, Guorong [1 ]
Li, Gang [1 ]
Jiang, Ling [1 ,5 ]
Yang, Xueming [1 ,3 ,5 ,6 ,7 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam & Dalian Coherent Li, 457 Zhongshan Rd, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
[3] Inst Adv Sci Facil, Shenzhen 518107, Peoples R China
[4] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Peoples R China
[5] Hefei Natl Lab, Hefei 230088, Peoples R China
[6] Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Peoples R China
[7] Southern Univ Sci & Technol, Guangdong Prov Key Lab Catalyt Chem, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Anthropogenic-biogenic interactions; Secondary organic aerosol; Volatile organic compound; Photooxidation mechanism; alpha-pinene; GAS-PHASE; NITRIC-ACID; PARTICLE FORMATION; RELATIVE-HUMIDITY; SOA FORMATION; OZONOLYSIS; AMMONIA; YIELDS; OXIDATION; CHEMISTRY;
D O I
10.1016/j.atmosenv.2024.120778
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding the effects of mixed anthropogenic pollutants on the photooxidation of volatile organic compounds (VOCs) is essential for unraveling the formation pathways of secondary organic aerosols (SOA). Yet, it remains a highly challenging experimental target owing to the complexities in the precise measurement of molecular compositions of products and number/mass concentrations of particles as a function of pollutant concentration in the ambient atmosphere. Here, a series of well-defined chamber experiments were performed to explore the effects of NOx x and NH3 3 on the SOA formation from photooxidation of the most abundant monoterpene, alpha-pinene. The results indicate that the suppression effect of NO and NO2 2 on the alpha-pinene photooxidation shows monotonous and parabolic trends, respectively. The presence of NH3 3 enhances particle number concentrations during the alpha-pinene + NOx x photooxidation by participating in reactions with organic acids. New compounds, including organic peroxides, esters, organic nitrates, and peroxyacyl nitrates, are observed at molecular weight (MW) = 166, 173, 217, 231, 280, 282, 304, and 410 through threshold photoionization making use of a recently constructed vacuum ultraviolet free electron laser in positive ion mode. The molecular structures and formation paths of these species are speculated, which advance the category of VOC oxidation products. Our study provides significant understanding of the influence of NOx x and NH3 3 on the VOC photooxidation, which can be utilized to establish predictive SOA formation networks and to improve atmospheric models.
引用
收藏
页数:12
相关论文
共 50 条
  • [22] Secondary organic aerosol formation from isoprene photooxidation
    Kroll, JH
    Ng, NL
    Murphy, SM
    Flagan, RC
    Seinfeld, JH
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (06) : 1869 - 1877
  • [23] Secondary organic aerosol formation from methacrolein photooxidation: roles of NOx level, relative humidity and aerosol acidity
    Zhang, Haofei
    Lin, Ying-Hsuan
    Zhang, Zhenfa
    Zhang, Xiaolu
    Shaw, Stephanie L.
    Knipping, Eladio M.
    Weber, Rodney J.
    Gold, Avram
    Kamens, Richard M.
    Surratt, Jason D.
    ENVIRONMENTAL CHEMISTRY, 2012, 9 (03) : 247 - 262
  • [24] Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation
    Biwu Chu
    Jiming Hao
    Junhua Li
    Hideto Takekawa
    Kun Wang
    Jingkun Jiang
    Frontiers of Environmental Science & Engineering, 2013, 7 : 1 - 9
  • [25] The effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions
    Han, Yuemei
    Stroud, Craig A.
    Liggio, John
    Li, Shao-Meng
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (21) : 13929 - 13944
  • [26] Secondary organic aerosol formation during the photooxidation of toluene:: NOx dependence of chemical composition
    Sato, Kei
    Hatakeyama, Shiro
    Imamura, Takashi
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (39): : 9796 - 9808
  • [27] Simulating the Formation of Secondary Organic Aerosol from the Photooxidation of Toluene
    Johnson, David
    Jenkin, Michael E.
    Wirtz, Klaus
    Martin-Reviejo, Montserrat
    ENVIRONMENTAL CHEMISTRY, 2004, 1 (03) : 150 - 165
  • [28] Effects of NO and SO2 on the secondary organic aerosol formation from isoprene photooxidation
    Zhang, Zhaoyan
    Zhao, Yingqi
    Zhao, Ya
    Zang, Xiangyu
    Xie, Hua
    Yang, Jiayue
    Zhang, Weiqing
    Wu, Guorong
    Li, Gang
    Yang, Xueming
    Jiang, Ling
    ATMOSPHERIC ENVIRONMENT, 2024, 318
  • [29] Formation of secondary organic aerosol from irradiated α-pinene/toluene/NOx mixtures and the effect of isoprene and sulfur dioxide
    Jaoui, Mohammed
    Edney, Edward O.
    Kleindienst, Tadeusz E.
    Lewandowski, Michael
    Offenberg, John H.
    Surratt, Jason D.
    Seinfeld, John H.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D9)
  • [30] NOx effects on nighttime secondary organic aerosol (SOA) formation
    Draper, Danielle C.
    Farmer, Delphine K.
    Fry, Juliane L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245