Graph contrastive learning with consistency regularization

被引:0
|
作者
Lee, Soohong [1 ,2 ]
Lee, Sangho [1 ,2 ]
Lee, Jaehwan [1 ,2 ]
Lee, Woojin [3 ]
Son, Youngdoo [1 ,2 ]
机构
[1] Dongguk Univ Seoul, Dept Ind & Syst Engn, Seoul 04620, South Korea
[2] Dongguk Univ Seoul, Data Sci Lab DSLAB, Seoul 04620, South Korea
[3] Dongguk Univ Seoul, Sch AI Convergence, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Contrastive learning; Class collision; Consistency regularization; Graph representation learning; Graph neural network;
D O I
10.1016/j.patrec.2024.03.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrastive learning has actively been used for unsupervised graph representation learning owing to its success in computer vision. Most graph contrastive learning methods use instance discrimination. It treats each instance as a distinct class against a query instance as the pretext task. However, such methods inevitably cause a class collision problem because some instances may belong to the same class as the query. Thus, the similarity shared through instances from the same class cannot be reflected in the pre-training stage. To address this problem, we propose graph contrastive learning with consistency regularization (GCCR), which introduces consistency regularization term to graph contrastive learning. Unlike existing methods, GCCR can obtain graph representation that reflects intra-class similarity by introducing a consistency regularization term. To verify the effectiveness of the proposed method, we performed extensive experiments and demonstrated that GCCR improved the quality of graph representations for most datasets. Notably, experimental results in various settings show that the proposed method can learn effective graph representations with better robustness against transformations than other state-of-the-art methods.
引用
收藏
页码:43 / 49
页数:7
相关论文
共 50 条
  • [41] Certifiably Robust Graph Contrastive Learning
    Lin, Minhua
    Xiao, Teng
    Dai, Enyan
    Zhang, Xiang
    Wang, Suhang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [42] Multimodal Graph Meta Contrastive Learning
    Zhao, Feng
    Wang, Donglin
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3657 - 3661
  • [43] CCGL: Contrastive Cascade Graph Learning
    Xu, Xovee
    Zhou, Fan
    Zhang, Kunpeng
    Liu, Siyuan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4539 - 4554
  • [44] Contrastive Learning for Supervised Graph Matching
    Ratnayaka, Gathika
    Wang, Qing
    Li, Yang
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1718 - 1729
  • [45] CCGN: consistency contrastive-learning graph network for multi-modal fake news detection
    Cui, Shaodong
    Duan, Kaibo
    Ma, Wen
    Shinnou, Hiroyuki
    MULTIMEDIA SYSTEMS, 2025, 31 (02)
  • [46] Graph Contrastive Learning With Personalized Augmentation
    Zhang, Xin
    Tan, Qiaoyu
    Huang, Xiao
    Li, Bo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6305 - 6316
  • [47] Contrastive Graph Learning for Social Recommendation
    Zhang, Yongshuai
    Huang, Jiajin
    Li, Mi
    Yang, Jian
    FRONTIERS IN PHYSICS, 2022, 10
  • [48] Adaptive Graph Contrastive Learning for Recommendation
    Jiang, Yangqin
    Huang, Chao
    Xia, Lianghao
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4252 - 4261
  • [49] Provable Training for Graph Contrastive Learning
    Yu, Yue
    Wang, Xiao
    Zhang, Mengmei
    Liu, Nian
    Shi, Chuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [50] Graph Contrastive Learning with Reinforcement Augmentation
    Liu, Ziyang
    Wang, Chaokun
    Wu, Cheng
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 2225 - 2233