Measurement and prediction of temperature effects on the thermal conductivity of carbonate sand

被引:2
|
作者
Zhang, Xinrui [1 ,2 ,3 ]
Kong, Gangqiang [2 ,3 ]
Jiang, Zihua [4 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Civil Engn, Suzhou 215009, Jiangsu, Peoples R China
[2] Hohai Univ, Key Lab, Minist Educ Geomech & Embankment Engn, Nanjing 210024, Jiangsu, Peoples R China
[3] Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210024, Jiangsu, Peoples R China
[4] Suzhou Rail Transit Grp Co Ltd, Suzhou Rail Transit Technol Innovat Res Inst Co Lt, Suzhou 215000, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal conductivity; Temperature; Prediction; Carbonate sand; Water content; WIDE-RANGE; MODEL; SOIL; ENHANCEMENT; PROBE;
D O I
10.1016/j.icheatmasstransfer.2024.107899
中图分类号
O414.1 [热力学];
学科分类号
摘要
Abnormal weather and climate patterns have caused significant temperature fluctuations. These temperature changes can significantly impact the thermal conductivity of carbonate sand (Acar) used in island and reef construction. The thermal conductivity of carbonate sand is crucial for engineering applications. The thermal conductivity of carbonate sand was measured under varying temperature and water content conditions. The results indicate that the thermal conductivity of carbonate sand increases with rising temperature from completely dry conditions to full water saturation. A modified model was proposed to calculate Acar for different temperatures and degrees of saturation (Sr) based on existing literature models. This model successfully captures the variations in Acar with temperature for carbonate sand, effectively illustrating the trend of Acar changes with temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Influence of particle size and packing on the thermal conductivity of carbonate sand
    Huan He
    Yong He
    Guojun Cai
    Yingfan Wang
    Guozhu Zhang
    Granular Matter, 2022, 24
  • [2] Influence of particle size and packing on the thermal conductivity of carbonate sand
    He, Huan
    He, Yong
    Cai, Guojun
    Wang, Yingfan
    Zhang, Guozhu
    GRANULAR MATTER, 2022, 24 (04)
  • [3] Apparatus for Coupled Effects of Suction, Temperature, and Stress on Thermal Conductivity of Unsaturated Sand
    Yao, Jun
    Ozocak, Askin
    Wang, Tengfei
    Likos, William J.
    Edil, Tuncer B.
    GEOTECHNICAL TESTING JOURNAL, 2021, 44 (02): : 358 - 372
  • [4] Thermal conductivity of calcareous sand and its prediction model
    Che D.
    Zeng Z.
    Lin M.
    Yang C.
    Fu H.
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2023, 45 : 71 - 74
  • [5] Simultaneous measurement of thermal conductivity, thermal diffusivity and prediction of effective thermal conductivity of porous consolidated igneous rocks at room temperature
    Aurangzeb
    Ali, Zulqurnain
    Gurmani, Samia Faiz
    Maqsood, Asghari
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (17) : 3876 - 3881
  • [6] Measurement of thermal conductivity varying with temperature
    Xu, Zhiming
    Yang, Shanrang
    Chen, Fu
    Zhao, Xiaotong
    Wang, Jianguo
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 19 (01): : 83 - 85
  • [7] Measurement and prediction on thermal conductivity of fused quartz
    Zhang, Xin Rui
    Kong, Gang Qiang
    Wang, Le Hua
    Xu, Xiao Liang
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Measurement and Prediction of the Thermal Conductivity of Ionic Liquids
    Rausch, Michael H.
    Krzeminski, Kamil
    Assenbaum, Daniel
    Wasserscheid, Peter
    Leipertz, Alfred
    Froeba, Andreas P.
    CHEMIE INGENIEUR TECHNIK, 2011, 83 (09) : 1510 - 1514
  • [9] Effective Thermal Conductivity of Nanofluids: Measurement and Prediction
    Francisco E. Berger Bioucas
    Michael H. Rausch
    Jochen Schmidt
    Andreas Bück
    Thomas M. Koller
    Andreas P. Fröba
    International Journal of Thermophysics, 2020, 41
  • [10] Thermal Conductivity of Ionic Liquids: Measurement and Prediction
    A. P. Fröba
    M. H. Rausch
    K. Krzeminski
    D. Assenbaum
    P. Wasserscheid
    A. Leipertz
    International Journal of Thermophysics, 2010, 31 : 2059 - 2077