Thermal image-driven thermal error modeling and compensation in CNC machine tools based on deep attentional residual network

被引:1
|
作者
Cui, Chang [1 ]
Zan, Tao [1 ]
Ma, Shengkai [1 ]
Sun, Tiewei [1 ]
Lu, Wenlong [1 ]
Gao, Xiangsheng [1 ]
机构
[1] Beijing Univ Technol, Coll Mech & Energy Engn, Beijing Key Lab Adv Mfg Technol, 100 Pingleyuan, Beijing 100124, Peoples R China
关键词
Thermal image; Deep residual network; Attention mechanism; Transfer learning; Thermal error prediction; DEFORMATION; SYSTEM;
D O I
10.1007/s00170-024-14280-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Thermal error is a critical factor influencing the machining accuracy of CNC machine tools, so it is essential to comprehensively model and compensate for thermal errors in CNC machine tools. This paper proposes a deep attentional residual network thermal error prediction model driven by thermal image inputs. In contrast to traditional models that solely rely on temperature data, the proposed model utilizes thermal image data as a key input parameter and incorporates temperature data from sensitive points to fully represent the machine's temperature distribution. Furthermore, the attention mechanism is used to optimize the hyperparameters and network structure of the residual network model. Transfer learning is employed to improve training efficiency, reduce data requirements, and enhance the model's transferability. The optimized model achieves a prediction accuracy of 99.5% and converges more quickly. Finally, thermal error compensation experiments are conducted on the platform of the Siemens 840D system with an average effect of more than 70%. The proposed thermal error compensation method is effective and provides a foundation for precision machining.
引用
收藏
页码:3153 / 3169
页数:17
相关论文
共 50 条
  • [31] Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error
    H. Pahk
    S.W. Lee
    The International Journal of Advanced Manufacturing Technology, 2002, 20 : 487 - 494
  • [32] Establishment of autoregressive distributed lag model in thermal error compensation of CNC machine tools
    Yao, Huanxin
    Niu, Pengcheng
    Gong, Yayun
    Shao, Shanmin
    Miao, Enming
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (03): : 246 - 250
  • [33] Robust modeling method for thermal error of CNC machine tools based on random forest algorithm
    Zhu, Mengrui
    Yang, Yun
    Feng, Xiaobing
    Du, Zhengchun
    Yang, Jianguo
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (04) : 2013 - 2026
  • [34] Robust modeling method for thermal error of CNC machine tools based on random forest algorithm
    Mengrui Zhu
    Yun Yang
    Xiaobing Feng
    Zhengchun Du
    Jianguo Yang
    Journal of Intelligent Manufacturing, 2023, 34 : 2013 - 2026
  • [35] A general method for thermal error measurement and modeling in CNC machine tools’ spindle
    Qiang Li
    Haolin Li
    The International Journal of Advanced Manufacturing Technology, 2019, 103 : 2739 - 2749
  • [36] Thermal Error Modeling of a CNC Machine Tool
    Mao, Chongzhi
    Guo, Qianjian
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 1782 - 1785
  • [37] Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm
    Liu, Hui
    Miao, En Ming
    Wei, Xin Yuan
    Zhuang, Xin Dong
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2017, 113 : 35 - 48
  • [38] Thermal Error Modeling for CNC Machine Tools Based on Parallel Locally Weighted Linear Regression
    Wei, Xian
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2018, : 639 - 642
  • [39] A general method for thermal error measurement and modeling in CNC machine tools' spindle
    Li, Qiang
    Li, Haolin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 103 (5-8): : 2739 - 2749
  • [40] Thermal Error Prediction Method of CNC Machine Tools Based on Parallel Depth Belief Network
    Du L.
    Yu Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (08): : 414 - 419