Monitoring the Behavior of Na Ions and Solid Electrolyte Interphase Formation at an Aluminum/Ionic Liquid Electrode/Electrolyte Interface via Operando Electrochemical X-ray Photoelectron Spectroscopy

被引:1
|
作者
Lee, Roxy [1 ]
Nunney, Tim S. [2 ]
Isaacs, Mark [1 ,3 ]
Palgrave, Robert G. [1 ]
Dey, Avishek [1 ,4 ]
机构
[1] UCL, Dept Chem, London WC1H 0AJ, England
[2] Felbridge Ctr, Unit 1, Thermo Fisher Sci, E Grinstead RH19 1XP, W Sussex, England
[3] Rutherford Appleton Lab, HarwellXPS, Res Complex Harwell, Didcot OX11 0FA, England
[4] Faraday Inst, Quad One, Harwell Sci & Innovat Campus, Didcot OX11 0RA, England
基金
英国工程与自然科学研究理事会;
关键词
XPS; operando; cyclic voltammetry; SEI; sodium ion; ionic liquid; IN-SITU; BATTERIES; SODIUM; XPS;
D O I
10.1021/acsami.4c02241
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In electrochemical energy storage devices, the interface between the electrode and the electrolyte plays a crucial role. A solid electrolyte interphase (SEI) is formed on the electrode surface due to spontaneous decomposition of the electrolyte, which in turn controls the dynamics of ion migration during charge and discharge cycles. However, the dynamic nature of the SEI means that its chemical structure evolves over time and as a function of the applied bias; thus, a true operando study is extremely valuable. X-ray photoelectron spectroscopy (XPS) is a widely used technique to understand the surface electronic and chemical properties, but the use of ultrahigh vacuum in standard instruments is a major hurdle for their utilization in measuring wet electrochemical processes. Herein, we introduce a 3-electrode electrochemical cell to probe the behavior of Na ions and the formation of SEI at the interface of an ionic liquid (IL) electrolyte and an aluminum electrode under operando conditions. A system containing 0.5 molar NaTFSI dissolved in the IL [BMIM][TFSI] was investigated using an Al working electrode and Pt counter and reference electrodes. By optimizing the scan rate of both XPS and cyclic voltammetry (CV) techniques, we captured the formation and evolution of SEI chemistry using real-time spectra acquisition techniques. A CV scan rate of 2 mVs(-1) was coupled with XPS snapshot spectra collected at 10 s per core level. The technique demonstrated here provides a platform for the chemical analysis of materials beyond batteries.
引用
收藏
页码:35675 / 35685
页数:11
相关论文
共 50 条
  • [31] Development of an Electrochemical Cell for In Operando Characterization of Lithium/Electrolyte Interface Using X-Ray Total Reflection
    Fujii, Kairi
    Kibino, Keisuke
    Kimura, Koji
    Yoshii, Kazuki
    Kiuchi, Hisao
    Hirano, Tatsumi
    Takabayashi, Yasuhiro
    Sakaebe, Hikari
    Hayashi, Kouichi
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (09):
  • [32] Solid Electrolyte Interphase Formation at the Ionic Liquid Electrolyte-Lithium-Metal Interface Using an Ab Initio Molecular Dynamics Approach
    Galvez-Aranda, Diego E.
    Seminario, Jorge M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (03)
  • [33] Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy
    Kim, Yunok
    Kim, Dae Sik
    Um, Ji Hyun
    Yoon, Jaesang
    Kim, Ji Man
    Kim, Hansu
    Yoon, Won-Sub
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (35) : 29992 - 29999
  • [34] External Voltage-Induced Restructuring of the Solid-State Electrode/Electrolyte Interface Revealed by X-ray Photoelectron Spectroscopy Depth Profiling Analysis
    Chen, Xiaoqin
    Ning, Yanxiao
    Pei, Jinhui
    Zhang, Guohui
    Fu, Qiang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (08) : 10908 - 10915
  • [35] X-ray photoelectron spectroscopy as a probe for understanding the potential-dependent impact of fluoroethylene carbonate on the solid electrolyte interface formation in Na/Cu2Sb batteries
    Gimble, Nathan J.
    Kraynak, Leslie A.
    Schneider, Jacob D.
    Schulze, Maxwell C.
    Prieto, Amy L.
    JOURNAL OF POWER SOURCES, 2021, 489
  • [36] Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry
    Fears, T. M.
    Doucet, M.
    Browning, J. F.
    Baldwin, J. K. S.
    Winiarz, J. G.
    Kaiser, H.
    Taub, H.
    Sacci, R. L.
    Veith, G. M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (20) : 13927 - 13940
  • [37] Determination of solid electrolyte interphase formation mechanism on negative electrode surface in Li-O2 battery electrolyte by operando electrochemical atomic force microscopy observation
    Kitta, Mitsunori
    Sano, Hikaru
    APPLIED SURFACE SCIENCE, 2020, 528
  • [38] Study of the formation and evolution of solid electrolyte interface via in-situ electrochemical impedance spectroscopy
    Wang, Peng
    Yan, De
    Wang, Caiyun
    Ding, Hao
    Dong, Hong
    Wang, Jie
    Wu, Shumin
    Cui, Xiaoling
    Li, Chunlei
    Zhao, Dongni
    Li, Shiyou
    APPLIED SURFACE SCIENCE, 2022, 596
  • [39] Analysis of Solid-Electrolyte Interphase at the Interface between a Graphite Negative Electrode and a Diluted Solvate Ionic Liquid-Based Quasi-Solid-State Electrolyte
    Kawaji, Jun
    Unemoto, Atsushi
    Hirano, Tatsumi
    Takamatsu, Daiko
    Seki, Eiji
    Morishima, Makoto
    Okumura, Takefumi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
  • [40] A hard X-ray photoelectron spectroscopy study on the solid electrolyte interphase of a lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide based electrolyte for Si-electrodes
    Lindgren, Fredrik
    Xu, Chao
    Maibach, Julia
    Andersson, Anna M.
    Marcinek, Marek
    Niedzicki, Leszek
    Gustafsson, Torbjorn
    Bjorefors, Fredrik
    Edstrom, Kristina
    JOURNAL OF POWER SOURCES, 2016, 301 : 105 - 112