Deep learning assisted state space method for phase derivative estimation in digital holographic interferometry

被引:1
|
作者
Pandey, Dhruvam [1 ]
Gannavarpu, Rajshekhar [1 ,2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Elect Engn, Kanpur 208016, India
[2] Indian Inst Technol Kanpur, Ctr Lasers & Photon, Kanpur 208016, India
来源
OPTICS CONTINUUM | 2024年 / 3卷 / 09期
基金
新加坡国家研究基金会;
关键词
WINDOWED FOURIER-TRANSFORM; TYMPANIC MEMBRANE; DISPLACEMENT; CURVATURE; STRAIN;
D O I
10.1364/OPTCON.531598
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In digital holographic interferometry, the measurement of derivatives of the interference phase plays a crucial role in deformation testing since the displacement derivatives corresponding to a deformed object are directly related to the phase derivatives. In this work, we propose a recurrent neural network-assisted state space method for the reliable estimation of phase derivatives. The proposed method offers high robustness against severe noise and corrupted fringe data regions, and its performance is validated via numerical simulations. We also corroborate the practical applicability of the proposed method by analyzing experimental data corresponding to deformed test objects in digital holographic interferometry. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1765 / 1779
页数:15
相关论文
共 50 条
  • [21] Estimation of phase derivatives using discrete energy separation algorithm in digital holographic interferometry
    Kulkarni, Rishikesh
    Rastogi, Pramod
    OPTICS LETTERS, 2014, 39 (13) : 3722 - 3724
  • [22] Deep-Learning Multiscale Digital Holographic Intensity and Phase Reconstruction
    Chen, Bo
    Li, Zhaoyi
    Zhou, Yilin
    Zhang, Yirui
    Jia, Jingjing
    Wang, Ying
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [23] The method of digital holographic interferometry for research of dental implants
    Petrovska, H.
    Fitio, V
    Barylyak, A.
    Kotsiuba, Y.
    Bobitski, Y.
    Got, S.
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2020, : 557 - 560
  • [24] Digital holographic interferometry based on hexa-lateral derivative and reflection holography
    Picart, Pascal
    Desse, Jean Michel
    Olschewski, Francois
    INTERFEROMETRY XVIII, 2016, 9960
  • [25] Speckle denoising based on a deep learning via conditional generative adversarial network in digital holographic interferometry
    Fang, Qiang
    Xia, Haiting
    Song, Qinghe
    Zhang, Meijuan
    Guo, Rongxin
    Montresor, Silvio
    Picart, Pascal
    OPTICS EXPRESS, 2022, 30 (12): : 20666 - 20683
  • [26] Wrapped phase aberration compensation using deep learning in digital holographic microscopy
    Huang, Liu
    Tang, Jianjun
    Yan, Liping
    Chen, Jiayi
    Chen, Benyong
    APPLIED PHYSICS LETTERS, 2023, 123 (14)
  • [27] Phase-aberration compensation via deep learning in digital holographic microscopy
    Ma, Shujun
    Fang, Rui
    Luo, Yu
    Liu, Qi
    Wang, Shiliang
    Zhou, Xu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (10)
  • [28] 3D deformation measurement in digital holographic interferometry using a multitask deep learning architecture
    Vengala, Krishna Sumanth
    Paluru, Naveen
    Gorthi, Rama Krishna Sai Subrahmanyam
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (01) : 167 - 176
  • [29] A DEEP LEARNING FRAMEWORK FOR 3D SURFACE PROFILING OF THE OBJECTS USING DIGITAL HOLOGRAPHIC INTERFEROMETRY
    Sumanth, Krishna, V
    Gorthi, Rama Krishna Sai Subrahmanyam
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2656 - 2660
  • [30] Multiple phase estimation via signal separation using a windowed Fourier transform in digital holographic interferometry
    Kulkarni, Rishikesh
    Rastogi, Pramod
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2015, 26 (07)