A machine learning model for early candidemia prediction in the intensive care unit: Clinical application

被引:0
|
作者
Meng, Qiang [1 ]
Chen, Bowang [1 ]
Xu, Yingyuan [2 ]
Zhang, Qiang [2 ]
Ding, Ranran [1 ]
Ma, Zhen [1 ]
Jin, Zhi [1 ]
Gao, Shuhong [1 ]
Qu, Feng [1 ]
机构
[1] Shandong First Med Univ, Jining Peoples Hosp 1, Jining, Shandong, Peoples R China
[2] Tengzhou Cent Peoples Hosp, Pulm & Crit Care Med, Tengzhou City, Shandong, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
BLOOD-STREAM INFECTION; ARTIFICIAL-INTELLIGENCE; RISK; DIAGNOSIS; GLUCOCORTICOIDS; BACTEREMIA; EFFICACY; SEPSIS; ADULTS;
D O I
10.1371/journal.pone.0309748
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Candidemia often poses a diagnostic challenge due to the lack of specific clinical features, and delayed antifungal therapy can significantly increase mortality rates, particularly in the intensive care unit (ICU). This study aims to develop a machine learning predictive model for early candidemia diagnosis in ICU patients, leveraging their clinical information and findings. We conducted this study with a cohort of 334 patients admitted to the ICU unit at Ji Ning NO.1 people's hospital in China from Jan. 2015 to Dec. 2022. To ensure the model's reliability, we validated this model with an external group consisting of 77 patients from other sources. The candidemia to bacteremia ratio is 1:1. We collected relevant clinical procedures and eighteen key examinations or tests features to support the recursive feature elimination (RFE) algorithm. These features included total bilirubin, age, platelet count, hemoglobin, CVC, lymphocyte, Duration of stay in ICU and so on. To construct the candidemia diagnosis model, we employed random forest (RF) algorithm alongside other machine learning methods and conducted internal and external validation with training and testing sets allocated in a 7:3 ratio. The RF model demonstrated the highest area under the receiver operating characteristic (AUC) with values of 0.87 and 0.83 for internal and external validation, respectively. To evaluate the importance of features in predicting candidemia, Shapley additive explanation (SHAP) values were calculated and results revealed that total bilirubin and age were the most important factors in the prediction model. This advancement in candidemia prediction holds significant promise for early intervention and improved patient outcomes in the ICU setting, where timely diagnosis is of paramount crucial.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Development of a machine learning model for predicting pediatric mortality in the early stages of intensive care unit admission
    Bongjin Lee
    Kyunghoon Kim
    Hyejin Hwang
    You Sun Kim
    Eun Hee Chung
    Jong-Seo Yoon
    Hwa Jin Cho
    June Dong Park
    Scientific Reports, 11
  • [42] Key Concepts in Machine Learning and Clinical Applications in the Cardiac Intensive Care Unit
    Sarma, Dhruv
    Rali, Aniket S.
    Jentzer, Jacob. C.
    CURRENT CARDIOLOGY REPORTS, 2025, 27 (01)
  • [43] Development of a machine learning-based prediction model for sepsis-associated delirium in the intensive care unit
    Zhang, Yang
    Hu, Juanjuan
    Hua, Tianfeng
    Zhang, Jin
    Zhang, Zhongheng
    Yang, Min
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [44] Development of a machine learning-based prediction model for sepsis-associated delirium in the intensive care unit
    Yang Zhang
    Juanjuan Hu
    Tianfeng Hua
    Jin Zhang
    Zhongheng Zhang
    Min Yang
    Scientific Reports, 13
  • [45] Machine Learning for Intensive Care Delirium Prediction
    Gong, Kirby D.
    Lu, Ryan
    Bergamaschi, Teya
    Sanyal, Akaash
    Guo, Joanna
    Kim, Han
    Stevens, Robert D.
    ANESTHESIA AND ANALGESIA, 2021, 132 (5S_SUPPL): : 590 - 593
  • [46] Artificial intelligence and machine learning in intensive care research and clinical application
    Peine, A.
    Lutge, C.
    Poszler, F.
    Celi, L.
    Schoffski, O.
    Marx, G.
    Martin, L.
    ANASTHESIOLOGIE & INTENSIVMEDIZIN, 2020, 61 : 372 - 384
  • [47] Prediction of intensive care unit admission using machine learning in patients with odontogenic infection
    Yoon, Joo-Ha
    Park, Sung Min
    JOURNAL OF THE KOREAN ASSOCIATION OF ORAL AND MAXILLOFACIAL SURGEONS, 2024, 50 (04) : 216 - 221
  • [48] A Machine Learning Approach to Sepsis Prediction in non-Intensive Care Unit Patients
    Michelson, A.
    Yu, S.
    Gupta, A.
    Lai, A. M.
    Kollef, M. H.
    Payne, P. R. O.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199
  • [49] Machine Learning Prediction Models for Mortality in Intensive Care Unit Patients with Lactic Acidosis
    Pattharanitima, Pattharawin
    Thongprayoon, Charat
    Kaewput, Wisit
    Qureshi, Fawad
    Qureshi, Fahad
    Petnak, Tananchai
    Srivali, Narat
    Gembillo, Guido
    O'Corragain, Oisin A.
    Chesdachai, Supavit
    Vallabhajosyula, Saraschandra
    Guru, Pramod K.
    Mao, Michael A.
    Garovic, Vesna D.
    Dillon, John J.
    Cheungpasitporn, Wisit
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (21)
  • [50] Time-series Machine Learning Approach to Sepsis Prediction in the Intensive Care Unit
    Sears, I.
    Levy, M. M.
    Ventetuolo, C. E.
    Eickhoff, C.
    Abbasi, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207