Approximate Bound States for the Dunkl-Schrödinger Equation with Symmetrized Hulthén Potential

被引:0
|
作者
Schulze-Halberg, Axel [1 ,2 ]
机构
[1] Indiana Univ Northwest, Dept Math & Actuarial Sci, 3400 Broadway, Gary, IN 46408 USA
[2] Indiana Univ Northwest, Dept Phys, 3400 Broadway, Gary, IN 46408 USA
关键词
SCHEME;
D O I
10.1007/s00601-024-01960-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct approximate bound state solutions to the one-dimensional Schr & ouml;dinger equation within the Dunkl formalism for a symmetrized Hulth & eacute;n potential. Our method is based on reducing the governing equation to conventional Schr & ouml;dinger form, such that an approximation to an inverse quadratic term becomes applicable. Conditions for computing stationary energies, as well as for establishing boundedness and normalizability of our solutions are discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On the Schrödinger equation with potential concentrated on a surface
    M. V. Korovina
    Differential Equations, 2000, 36 : 1279 - 1283
  • [42] Approximate symmetry reduction for perturbed nonlinear Schrdinger equation
    谢水英
    林机
    Chinese Physics B, 2010, 19 (05) : 5 - 9
  • [43] On the Schrödinger equation with potential in modulation spaces
    Elena Cordero
    Fabio Nicola
    Journal of Pseudo-Differential Operators and Applications, 2014, 5 : 319 - 341
  • [44] On a nonlinear Schrödinger equation with periodic potential
    Thomas Bartsch
    Yanheng Ding
    Mathematische Annalen, 1999, 313 : 15 - 37
  • [45] Explicit approximate controllability of the Schrödinger equation with a polarizability term
    Morgan Morancey
    Mathematics of Control, Signals, and Systems, 2013, 25 : 407 - 432
  • [46] Symmetry of the Schrödinger Equation with Variable Potential
    Wilhelm Fushchych
    Zoya Symenoh
    Ivan Tsyfra
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 13 - 22
  • [47] Bound states to critical quasilinear Schrödinger equations
    Youjun Wang
    Wenming Zou
    Nonlinear Differential Equations and Applications NoDEA, 2012, 19 : 19 - 47
  • [48] Scattering states of the Duffin-Kemmer-Petiau equation for the Hulth,n potential
    Zarrinkamar, S.
    Forouhandeh, S. F.
    Yazarloo, B. H.
    Hassanabadi, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (09):
  • [49] Approximate solutions of Schrödinger equation for the Hua plus modified Eckart potential with the centrifugal term
    C. P. Onyenegecha
    U. M. Ukewuihe
    A. I. Opara
    C. B. Agbakwuru
    C. J. Okereke
    N. R. Ugochukwu
    S. A. Okolie
    I. J. Njoku
    The European Physical Journal Plus, 135
  • [50] Approximate Solutions of the Schrödinger Equation for the Rosen-Morse Potential Including Centrifugal Term
    F. Taşkın
    International Journal of Theoretical Physics, 2009, 48 : 2692 - 2697