A Lightweight Multi-Label Classification Method for Urban Green Space in High-Resolution Remote Sensing Imagery

被引:2
|
作者
Lin, Weihua [1 ]
Zhang, Dexiong [1 ]
Liu, Fujiang [1 ]
Guo, Yan [2 ]
Chen, Shuo [2 ]
Wu, Tianqi [1 ]
Hou, Qiuyan [1 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430078, Peoples R China
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430078, Peoples R China
关键词
multi-label classification; remote-sensing image; urban green space; lightweight model; SUBCELLULAR-LOCALIZATION; SURFACE TEMPERATURES; LEARNING CLASSIFIER; ECOSYSTEM SERVICES; PHOENIX; HEALTH; COVER;
D O I
10.3390/ijgi13070252
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Urban green spaces are an indispensable part of the ecology of cities, serving as the city's "purifier" and playing a crucial role in promoting sustainable urban development. Therefore, the refined classification of urban green spaces is an important task in urban planning and management. Traditional methods for the refined classification of urban green spaces heavily rely on expert knowledge, often requiring substantial time and cost. Hence, our study presents a multi-label image classification model based on MobileViT. This model integrates the Triplet Attention module, along with the LSTM module, to enhance its label prediction capabilities while maintaining its lightweight characteristic for standalone operation on mobile devices. Trial outcomes in our UGS dataset in this study demonstrate that the approach we used outperforms the baseline by 1.64%, 3.25%, 3.67%, and 2.71% in mAP,F1,precision, and recall, respectively. This indicates that the model can uncover the latent dependencies among labels to enhance the multi-label image classification device's performance. This study provides a practical solution for the intelligent and detailed classification of urban green spaces, which holds significant importance for the management and planning of urban green spaces.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A new method of road extraction from high-resolution remote sensing imagery
    Ni, Cui
    Guan, Zequn
    Ye, Qin
    SIXTH INTERNATIONAL SYMPOSIUM ON DIGITAL EARTH: MODELS, ALGORITHMS, AND VIRTUAL REALITY, 2010, 7840
  • [22] Mining Deep Semantic Representations for Scene Classification of High-Resolution Remote Sensing Imagery
    Hu, Fan
    Xia, Gui-Song
    Yang, Wen
    Zhang, Liangpei
    IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (03) : 522 - 536
  • [23] A COMPARATIVE STUDY OF SAMPLING ANALYSIS IN SCENE CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGERY
    Hu, Jingwen
    Xia, Gui-Song
    Hu, Fan
    Sun, Hong
    Zhang, Liangpei
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2389 - 2392
  • [24] Attention based Residual Network for High-Resolution Remote Sensing Imagery Scene Classification
    Fan, Runyu
    Wang, Lizhe
    Feng, Ruyi
    Zhu, Yingqian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1346 - 1349
  • [25] Spatial relationship-assisted classification from high-resolution remote sensing imagery
    Qiao, Cheng
    Wang, Jinfei
    Shang, Jiali
    Daneshfar, Bahram
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2015, 8 (09) : 710 - 726
  • [26] On the Effects of Different Types of Label Noise in Multi-Label Remote Sensing Image Classification
    Burgert, Tom
    Ravanbakhsh, Mahdyar
    Demir, Beguem
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] MLRSNet: A multi-label high spatial resolution remote sensing dataset for semantic scene understanding
    Qi, Xiaoman
    Zhu, Panpan
    Wang, Yuebin
    Zhang, Liqiang
    Peng, Junhuan
    Wu, Mengfan
    Chen, Jialong
    Zhao, Xudong
    Zang, Ning
    Mathiopoulos, P. Takis
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 169 (169) : 337 - 350
  • [28] Multi-scale Feature Fusion and Transformer Network for urban green space segmentation from high-resolution remote sensing images
    Cheng, Yong
    Wang, Wei
    Ren, Zhoupeng
    Zhao, Yingfen
    Liao, Yilan
    Ge, Yong
    Wang, Jun
    He, Jiaxin
    Gu, Yakang
    Wang, Yixuan
    Zhang, Wenjie
    Zhang, Ce
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 124
  • [29] A Land-cover Classification Method of High-resolution Remote Sensing Imagery Based on Convolution Neural Network
    Wang, Yuhan
    Gu, Lingjia
    Ren, Ruizhi
    Zheng, Xu
    Fan, Xintong
    EARTH OBSERVING SYSTEMS XXIII, 2018, 10764
  • [30] Multi-resolution classification network for high-resolution UAV remote sensing images
    Cong, Ming
    Xi, Jiangbo
    Han, Ling
    Gu, Junkai
    Yang, Ligong
    Tao, Yiting
    Xu, Miaozhong
    GEOCARTO INTERNATIONAL, 2022, 37 (11) : 3116 - 3140