Enumerating k-SAT functions

被引:0
|
作者
Dong, Dingding [1 ]
Mani, Nitya [2 ]
Zhao, Yufei [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
NUMBER; GRAPHS; EDGES; SETS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
How many k -SAT functions on n boolean variables are there? What does a typical such function look like? Bollobas, Brightwell, and Leader conjectured that, for each fixed k >= 2, the number of k-SAT functions on n variables is (1+o(1))2((n/k)+n), or equivalently: a 1 fraction of all k -SAT functions are unate, i.e., monotone after negating some variables. They proved a weaker version of the conjecture for k = 2. The conjecture was confirmed for k = 2 by Allen and k = 3 by Ilinca and Kahn. We show that the problem of enumerating k -SAT functions is equivalent to a Turan density problem for partially directed hypergraphs. Our proof uses the hypergraph container method. Furthermore, we confirm the Bollobas-Brightwell-Leader conjecture for k = 4 by solving the corresponding Turan density problem.
引用
收藏
页码:2141 / 2184
页数:44
相关论文
共 50 条
  • [31] BELIEF PROPAGATION ON THE RANDOM k-SAT MODEL
    Coja-Oghlan, Amin
    Mueller, Noela
    Ravelomanan, Jean B.
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3718 - 3796
  • [32] On the K-sat model with large number of clauses
    Panchenko, Dmitry
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (03) : 536 - 542
  • [33] Constraint satisfaction: random regular k-SAT
    Coja-Oghlan, Amin
    STATISTICAL PHYSICS, OPTIMIZATION, INFERENCE, AND MESSAGE-PASSING ALGORITHMS, 2016, : 231 - 251
  • [34] Strong refutation heuristics for random k-SAT
    Coja-Oghlan, Amin
    Goerdt, Andreas
    Lanka, Andre
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (01): : 5 - 28
  • [35] On Efficiently Solvable Cases of Quantum k-SAT
    Marco Aldi
    Niel de Beaudrap
    Sevag Gharibian
    Seyran Saeedi
    Communications in Mathematical Physics, 2021, 381 : 209 - 256
  • [36] A novel weighting scheme for random k-SAT
    Jun LIU
    Ke XU
    ScienceChina(InformationSciences), 2016, 59 (09) : 5 - 10
  • [37] A novel weighting scheme for random k-SAT
    Liu, Jun
    Xu, Ke
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (09)
  • [38] A pure hardware k-SAT solver for FPGA
    Bousmar, Khadija
    2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), 2018, : 481 - 485
  • [39] Combinatorial Landscape Analysis for k-SAT Instances
    Albrecht, Andreas A.
    Lane, Peter C. R.
    Steinhofel, Kathleen
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2498 - +
  • [40] A lower bound for DLL algorithms for k-SAT
    Pudlák, P
    Impagliazzo, R
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 128 - 136