Fox pairings of Poincaré duality groups

被引:0
|
作者
Nosaka, Takefumi [1 ]
机构
[1] Tokyo Inst Technol, Dept Math, 2-12-1 Ookayama,Meguro Ku, Tokyo 1528551, Japan
关键词
Fox pairing; group cohomology; Poincar & eacute; duality; derivations;
D O I
10.14492/hokmj/2022-646
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper develops the study of Fox pairings of a group G from the viewpoint of group cohomology. We compute some cohomology groups of Fox pairings of G, where G admits a Poincar & eacute; duality group pair. We also suggest fundamental Fox pairings and higher Fox pairings.
引用
收藏
页码:209 / 233
页数:25
相关论文
共 50 条
  • [21] Poincaré duality for algebraic de rham cohomology
    Francesco Baldassarri
    Maurizio Cailotto
    Luisa Fiorot
    manuscripta mathematica, 2004, 114 : 61 - 116
  • [22] Extending Persistence Using Poincaré and Lefschetz Duality
    David Cohen-Steiner
    Herbert Edelsbrunner
    John Harer
    Foundations of Computational Mathematics, 2009, 9 : 79 - 103
  • [23] Syntomic cycle classes and prismatic Poincaré duality
    Tang, Longke
    COMPOSITIO MATHEMATICA, 2024, 160 (10)
  • [24] ON THE VARIOUS NOTIONS OF POINCAR?E DUALITY PAIR
    Klein, John R.
    Qin, Lizhen
    Su, Yang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (06) : 4251 - 4283
  • [25] The Auslander–Reiten Quiver of a Poincaré Duality Space
    Peter Jørgensen
    Algebras and Representation Theory, 2006, 9 : 323 - 336
  • [26] Extending Persistence Using Poincaré and Lefschetz Duality
    David Cohen-Steiner
    Herbert Edelsbrunner
    John Harer
    Foundations of Computational Mathematics, 2009, 9 (1) : 133 - 134
  • [27] A pro-p version of Sela's accessibility and Poincaré duality pro-p groups
    Castellano, Ilaria
    Zalesskii, Pavel A.
    GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (04) : 1349 - 1368
  • [28] Dual Hyperquaternion Poincaré Groups
    Patrick R. Girard
    Patrick Clarysse
    Romaric Pujol
    Robert Goutte
    Philippe Delachartre
    Advances in Applied Clifford Algebras, 2021, 31
  • [29] Poincaré duality for generalized persistence diagrams of (co)filtrations
    Patel A.
    Rask T.
    Journal of Applied and Computational Topology, 2024, 8 (2) : 427 - 442
  • [30] Poincaré duality and periodicity, II. James periodicity
    John R. Klein
    William Richter
    Geometriae Dedicata, 2010, 148 : 291 - 302