UNETR plus plus : Delving Into Efficient and Accurate 3D Medical Image Segmentation

被引:4
|
作者
Shaker, Abdelrahman [1 ]
Maaz, Muhammad [1 ]
Rasheed, Hanoona [1 ]
Khan, Salman [1 ]
Yang, Ming-Hsuan [2 ,3 ,4 ]
Khan, Fahad Shahbaz [5 ,6 ]
机构
[1] Mohamed Bin Zayed Univ Artificial Intelligence, Comp Vis Dept, Abu Dhabi, U Arab Emirates
[2] Univ Calif Merced, Elect Engn & Comp Sci Dept, Merced, CA 95343 USA
[3] Yonsei Univ, Coll Comp, Seoul 03722, South Korea
[4] Google, Mountain View, CA 95344 USA
[5] Mohamed Bin Zayed Univ, Abu Dhabi, U Arab Emirates
[6] Linkoping Univ, Elect Engn Dept, S-58183 Linkoping, Sweden
关键词
Image segmentation; Three-dimensional displays; Transformers; Biomedical imaging; Complexity theory; Graphics processing units; Task analysis; Deep learning; efficient attention; hybrid architecture; medical image segmentation; TRANSFORMER;
D O I
10.1109/TMI.2024.3398728
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Owing to the success of transformer models, recent works study their applicability in 3D medical segmentation tasks. Within the transformer models, the self-attention mechanism is one of the main building blocks that strives to capture long-range dependencies, compared to the local convolutional-based design. However, the self-attention operation has quadratic complexity which proves to be a computational bottleneck, especially in volumetric medical imaging, where the inputs are 3D with numerous slices. In this paper, we propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed. The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features using a pair of inter-dependent branches based on spatial and channel attention. Our spatial attention formulation is efficient and has linear complexity with respect to the input. To enable communication between spatial and channel-focused branches, we share the weights of query and key mapping functions that provide a complimentary benefit (paired attention), while also reducing the complexity. Our extensive evaluations on five benchmarks, Synapse, BTCV, ACDC, BraTS, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy. On Synapse, our UNETR++ sets a new state-of-the-art with a Dice Score of 87.2%, while significantly reducing parameters and FLOPs by over 71%, compared to the best method in the literature. Our code and models are available at: https://tinyurl.com/2p87x5xn.
引用
收藏
页码:3377 / 3390
页数:14
相关论文
共 50 条
  • [41] Hybrid segmentation framework for 3D medical image analysis
    Chen, T
    Metaxas, D
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1421 - 1432
  • [42] Medical image segmentation using 3D MRI data
    Voronin, V.
    Marchuk, V.
    Semenishchev, E.
    Cen, Yigang
    Agaian, S.
    MOBILE MULTIMEDIA/IMAGE PROCESSING, SECURITY, AND APPLICATIONS 2017, 2017, 10221
  • [43] Medical Image Segmentation by Improved 3D Adaptive Thresholding
    Kim, Cheol-Hwan
    Lee, Yun-Jung
    2015 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC), 2015, : 263 - 265
  • [44] 3D MEDICAL IMAGE INTERACTION AND SEGMENTATION USING KINECT
    Chang, Cheng
    Gao, Yi
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 498 - 501
  • [45] 3D Medical image segmentation using parallel transformers
    Yan, Qingsen
    Liu, Shengqiang
    Xu, Songhua
    Dong, Caixia
    Li, Zongfang
    Shi, Javen Qinfeng
    Zhang, Yanning
    Dai, Duwei
    PATTERN RECOGNITION, 2023, 138
  • [46] 3D Level Set Model for Medical Image Segmentation
    Yin, Guisheng
    Lin, Ying
    Wang, Yuhua
    2009 INTERNATIONAL CONFERENCE ON FUTURE BIOMEDICAL INFORMATION ENGINEERING (FBIE 2009), 2009, : 268 - 271
  • [47] Efficient semiautomatic segmentation of 3D objects in medical images
    Schenk, A
    Prause, G
    Peitgen, HO
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2000, 2000, 1935 : 186 - 195
  • [48] Patchwork plus plus : Fast and Robust Ground Segmentation Solving Partial Under-Segmentation Using 3D Point Cloud
    Lee, Seungjae
    Lim, Hyungtae
    Myung, Hyun
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 13276 - 13283
  • [49] One Network to Segment Them All: A General, Lightweight System for Accurate 3D Medical Image Segmentation
    Perslev, Mathias
    Dam, Erik Bjornager
    Pai, Akshay
    Igel, Christian
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 30 - 38
  • [50] Seam Carving for Color-plus-Depth 3D Image
    Jhou, Wei-Cih
    Lin, Yu-Hsun
    Wu, Ja-Ling
    2014 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2014, : 82 - 85