Transformer-based approach for symptom recognition and multilingual linking

被引:0
|
作者
Vassileva, Sylvia [1 ]
Grazhdanski, Georgi [1 ]
Koychev, Ivan [1 ]
Boytcheva, Svetla [1 ,2 ]
机构
[1] Sofia Univ St Kliment Ohridski, Fac Math & Informat, Blvd James Bourchier 5, Sofia 1164, Bulgaria
[2] Ontotext, Ul Nikola Gabrovski 79, Sofia 1700, Bulgaria
来源
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION | 2024年 / 2024卷
关键词
D O I
10.1093/database/baae090
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a transformer-based approach for symptom Named Entity Recognition (NER) in Spanish clinical texts and multilingual entity linking on the SympTEMIST dataset. For Spanish NER, we fine tune a RoBERTa-based token-level classifier with Bidirectional Long Short-Term Memory and conditional random field layers on an augmented train set, achieving an F1 score of 0.73. Entity linking is performed via a hybrid approach with dictionaries, generating candidates from a knowledge base containing Unified Medical Language System aliases using the cross-lingual SapBERT and reranking the top candidates using GPT-3.5. The entity linking approach shows consistent results for multiple languages of 0.73 accuracy on the SympTEMIST multilingual dataset and also achieves an accuracy of 0.6123 on the Spanish entity linking task surpassing the current top score for this subtask.Database URL: https://github.com/svassileva/symptemist-multilingual-linking
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Transformer-Based Approach to Melanoma Detection
    Cirrincione, Giansalvo
    Cannata, Sergio
    Cicceri, Giovanni
    Prinzi, Francesco
    Currieri, Tiziana
    Lovino, Marta
    Militello, Carmelo
    Pasero, Eros
    Vitabile, Salvatore
    SENSORS, 2023, 23 (12)
  • [22] A Transformer-Based Framework for Scene Text Recognition
    Selvam, Prabu
    Koilraj, Joseph Abraham Sundar
    Tavera Romero, Carlos Andres
    Alharbi, Meshal
    Mehbodniya, Abolfazl
    Webber, Julian L.
    Sengan, Sudhakar
    IEEE ACCESS, 2022, 10 : 100895 - 100910
  • [23] A TRANSFORMER-BASED APPROACH FOR METAL 3D PRINTING QUALITY RECOGNITION
    Zhang, Weihao
    Wang, Jiapeng
    Ma, Honglin
    Zhang, Qi
    Fan, Shuqian
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (IEEE ICMEW 2022), 2022,
  • [24] Transformer-based approach to variable typing
    Rey, Charles Arthel
    Danguilan, Jose Lorenzo
    Mendoza, Karl Patrick
    Remolona, Miguel Francisco
    HELIYON, 2023, 9 (10)
  • [25] MusicEmo: transformer-based intelligent approach towards music emotion generation and recognition
    Xin Y.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (08) : 3107 - 3117
  • [26] RM-Transformer: A Transformer-based Model for Mandarin Speech Recognition
    Lu, Xingyu
    Hu, Jianguo
    Li, Shenhao
    Ding, Yanyu
    2022 IEEE 2ND INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE (CCAI 2022), 2022, : 194 - 198
  • [27] A transformer-based deep learning approach for recognition of forgery methods in spoofing speech attribution
    Zhang, Qiang
    Zhang, Xiongwei
    Sun, Meng
    Yang, Jibin
    APPLIED SOFT COMPUTING, 2025, 171
  • [28] An Explainable CNN and Vision Transformer-Based Approach for Real-Time Food Recognition
    Nfor, Kintoh Allen
    Theodore Armand, Tagne Poupi
    Ismaylovna, Kenesbaeva Periyzat
    Joo, Moon-Il
    Kim, Hee-Cheol
    NUTRIENTS, 2025, 17 (02)
  • [29] Transformer-based Models for Arabic Online Handwriting Recognition
    Alwajih, Fakhraddin
    Badr, Eman
    Abdou, Sherif
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (05) : 898 - 905
  • [30] A Light Transformer-Based Architecture for Handwritten Text Recognition
    Barrere, Killian
    Soullard, Yann
    Lemaitre, Aurelie
    Couasnon, Bertrand
    DOCUMENT ANALYSIS SYSTEMS, DAS 2022, 2022, 13237 : 275 - 290