Congruence properties modulo powers of 2 for 4-regular partitions

被引:0
|
作者
Du, Julia Q. D. [1 ]
Tang, Dazhao [2 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Hebei Key Lab Computat Math & Applicat, Shijiazhuang, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2024年 / 31卷 / 03期
基金
中国国家自然科学基金;
关键词
NUMBER;
D O I
10.37236/11919
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let b(& ell;)(n) denote the number of -regular pound partitions of n. Congruences properties modulo powers of 2 for b4(n) have been considered subsequently by Andrews- Hirschhorn-Sellers, Chen, Cui-Gu, Xia, Dai, and Ballantine-Merca. In this paper, we present an approach which can be utilized to prove "self-similar" congruence property satisfied by the generating function of b(4)(n). As an immediate consequence, one can obtain dozens of congruence families modulo powers of 2 enjoyed by b(4)(n). These results not only generalize some previous results, but also can be viewed as a supplement to Keith and Zanello's comprehensive study of the congruence properties for & ell;-regular partition functions. Finally, we also pose several conjectures on congruence families, internal congruence families and self-similar congruence properties for 4-, 8- and 16-regular partition functions.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Congruences modulo powers of 5 for k-colored partitions
    Tang, Dazhao
    JOURNAL OF NUMBER THEORY, 2018, 187 : 198 - 214
  • [42] Congruences modulo powers of 3 for k-colored partitions
    Wen, Xin-Qi
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023,
  • [43] Congruences modulo powers of 3 for k-colored partitions
    Wen, Xin-Qi
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2025, 56 (01): : 324 - 338
  • [44] RAMANUJAN AND THE CONGRUENCE PROPERTIES OF PARTITIONS
    RAMANATHAN, KG
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1980, 89 (03): : 133 - 157
  • [45] Congruence properties of partitions.
    Ramanujan, S
    MATHEMATISCHE ZEITSCHRIFT, 1921, 9 : 147 - 153
  • [46] A Congruence Modulo 3 for Partitions into Distinct Non-Multiples of Four
    Hirschhorn, Michael D.
    Sellers, James A.
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (09)
  • [47] On Domination Number of 4-Regular Graphs
    Hailong Liu
    Liang Sun
    Czechoslovak Mathematical Journal, 2004, 54 : 889 - 898
  • [48] Domination in 4-regular Knodel graphs
    Mojdeh, Doost Ali
    Musawi, S. R.
    Nazari, E.
    OPEN MATHEMATICS, 2018, 16 : 816 - 825
  • [49] An unexpected Ramanujan-type congruence modulo 7 for 4-colored generalized Frobenius partitions
    Wenlong Zhang
    Chun Wang
    The Ramanujan Journal, 2017, 44 : 125 - 131
  • [50] An unexpected Ramanujan-type congruence modulo 7 for 4-colored generalized Frobenius partitions
    Zhang, Wenlong
    Wang, Chun
    RAMANUJAN JOURNAL, 2017, 44 (01): : 125 - 131