Data Augmentation by Adaptative Targeted Zoom for MRI Brain Tumor Segmentation

被引:0
|
作者
Hernandez, Jose Armando [1 ]
机构
[1] Univ Paris Saclay, Ctr Borelli, CNRS, ENS Paris Saclay, F-91190 Gif Sur Yvette, France
来源
关键词
D O I
10.1007/978-3-031-63848-0_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study presents a novel data augmentation methodology to enhance the scientific outcomes achieved during the Brats 2023 challenge. The 3D-UNet neural network, initially proposed by Ronneberger et al. in 2015 for biomedical image segmentation, is described. Its performance is evaluated in the segmentation of human brain tumors utilizing authentic MRI data from the BraTS 2023 challenge. The specifics of the data augmentation algorithm and its importance in the context of MRI images of this nature, as well as the utilized network architecture, are briefly expounded. Finally, future directions are outlined.
引用
下载
收藏
页码:14 / 24
页数:11
相关论文
共 50 条
  • [41] Semantic Segmentation of Brain Tumor from MRI Images
    Devika, V. K.
    Meena, V
    Ramachandran, Sindhu S.
    IEEE INDICON: 15TH IEEE INDIA COUNCIL INTERNATIONAL CONFERENCE, 2018,
  • [42] Brain tumor segmentation in MRI based on fuzzy aggregators
    Zhu, Y
    Liao, QM
    Dou, WB
    Ruan, S
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2005, PTS 1-4, 2005, 5960 : 1704 - 1711
  • [43] Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI
    Pei, Linmin
    Reza, Syed M. S.
    Li, Wei
    Davatzikos, Christos
    Iftekharuddin, Khan M.
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [44] Improved Brain Tumor Growth Prediction and Segmentation in Longitudinal Brain MRI
    Pei, Linmin
    Reza, Syed M. S.
    Iftekharuddin, Khan M.
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 421 - 424
  • [45] CarveMix: A Simple Data Augmentation Method for Brain Lesion Segmentation
    Zhang, Xinru
    Liu, Chenghao
    Ou, Ni
    Zeng, Xiangzhu
    Xiong, Xiaoliang
    Yu, Yizhou
    Liu, Zhiwen
    Ye, Chuyang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I, 2021, 12901 : 196 - 205
  • [46] CarveMix: A simple data augmentation method for brain lesion segmentation
    Zhang, Xinru
    Liu, Chenghao
    Ou, Ni
    Zeng, Xiangzhu
    Zhuo, Zhizheng
    Duan, Yunyun
    Xiong, Xiaoliang
    Yu, Yizhou
    Liu, Zhiwen
    Liu, Yaou
    Ye, Chuyang
    NEUROIMAGE, 2023, 271
  • [47] Brain Tumor Segmentation from MRI Data Using Ensemble Learning and Multi-Atlas
    Fulop, Timea
    Gyorfi, Agnes
    Suranyi, Bela
    Kovacs, Levente
    Szilagyi, Laszlo
    2020 IEEE 18TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2020), 2020, : 111 - 116
  • [48] TuMore: Generation of Synthetic Brain Tumor MRI Data for Deep Learning Based Segmentation Approaches
    Lindner, Lydia
    Pfarrkirchner, Birgit
    Gsaxner, Christina
    Schmalstieg, Dieter
    Egger, Jan
    MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
  • [49] Automatic Segmentation of Brain Tumor Parts from MRI Data Using a Random Forest Classifier
    Csaholczi, Szabolcs
    Kovacs, Levente
    Szilagyi, Laszlo
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 471 - 475
  • [50] TwoPath U-Net for Automatic Brain Tumor Segmentation from Multimodal MRI Data
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 300 - 309