(1, p)-Sobolev spaces based on strongly local Dirichlet forms

被引:0
|
作者
Kuwae, Kazuhiro [1 ]
机构
[1] Fukuoka Univ, Dept Appl Math, Fukuoka, Japan
关键词
carre du champ operator; Dirichlet form; minimal E-dominant measure; normal contraction; quasi-regular; strongly local; E-dominant measure; (1; p)-Sobolev space; SUB-MARKOVIAN SEMIGROUPS; P-POTENTIAL-THEORY; LIPSCHITZ FUNCTIONS; EQUIVALENCE; ENERGY;
D O I
10.1002/mana.202400025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the framework of quasi-regular strongly local Dirichlet form (E, D(E)) on L-2(X; m) admitting minimal E-dominant measure mu, we construct a natural p-energy functional (E-p, D(E-p)) on L-p(X; m) and (1, p)-Sobolev space (H-1,H-p(X), parallel to center dot parallel to(H1,p)) for p is an element of]1, +infinity[. In this paper, we establish the Clarkson-type inequality for (H-1,H-p(X), parallel to center dot parallel to(H1,p)). As a consequence, (H-1,H-p(X), parallel to center dot parallel to(H1,p)) is a uniformly convex Banach space, hence it is reflexive. Based on the reflexivity of (H-1,H-p(X), parallel to center dot parallel to(H1,p)), we prove that (generalized) normal contraction operates on (E-p, D (E-p)), which has been shown in the case of various concrete settings, but has not been proved for such a general framework. Moreover, we prove that (1, p)- capacity Cap(1,p) (A) < infinity for open set A admits an equilibrium potential e(A) is an element of D(E-p) with 0 = <= e(A) <= 1 m-a.e. and e(A) = 1 m.-a.e. on A.
引用
收藏
页码:3723 / 3740
页数:18
相关论文
共 50 条
  • [1] Sobolev and isoperimetric inequalities for dirichlet forms on homogeneous spaces
    Biroli, Marco
    Mosco, Umberio
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, 6 (01):
  • [2] Rademacher-type theorems and Sobolev-to-Lipschitz properties for strongly local Dirichlet spaces
    Dello Schiavo, Lorenzo
    Suzuki, Kohei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (11)
  • [3] Dirichlet Forms, Poincaré Inequalities, and the Sobolev Spaces of Korevaar and Schoen
    Pekka Koskela
    Nageswari Shanmugalingam
    Jeremy T. Tyson
    Potential Analysis, 2004, 21 : 241 - 262
  • [4] Dirichlet forms, Poincare inequalities, and the Sobolev spaces of Korevaar and Schoen
    Koskel, P
    Shanmugalingam, N
    Tyson, JT
    POTENTIAL ANALYSIS, 2004, 21 (03) : 241 - 262
  • [5] WIENER CRITERION AT THE BOUNDARY RELATED TO P-HOMOGENEOUS STRONGLY LOCAL DIRICHLET FORMS
    Biroli, Marco
    Marchi, Silvana
    MATEMATICHE, 2007, 62 (02): : 37 - 52
  • [6] Γ-CONVERGENCE FOR STRONGLY LOCAL DIRICHLET FORMS IN OPEN SETS WITH HOLES
    Biroli, Marco
    POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, 2009, : 35 - 47
  • [7] A recurrence condition for some subordinated strongly local Dirichlet forms
    McGillivray, I
    FORUM MATHEMATICUM, 1997, 9 (02) : 229 - 246
  • [8] THE ALLEGRETTO-PIEPENBRINK THEOREM FOR STRONGLY LOCAL DIRICHLET FORMS
    Lenz, Daniel
    Stollmann, Peter
    Veselic, Ivan
    DOCUMENTA MATHEMATICA, 2009, 14 : 167 - 189
  • [9] Generalized Eigenfunctions and Spectral Theory for Strongly Local Dirichlet Forms
    Lenz, Daniel
    Stollmann, Peter
    Veselic, Ivan
    SPECTRAL THEORY AND ANALYSIS, 2011, 214 : 83 - +
  • [10] Heat kernels and non-local Dirichlet forms on ultrametric spaces
    Bendikov, Alexander
    Grigor'yan, Alexander
    Hu, Eryan
    Hu, Jiaxin
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (01) : 399 - 461