High-performance InGaAs/GaAsSb extended short-wave infrared Electron-Injection photodetector

被引:1
|
作者
Liao, Kecai [1 ,2 ]
Huang, Min [1 ]
Wang, Nan [1 ]
Liang, Zhaoming [1 ]
Zhou, Yi [1 ]
Chen, Jianxin [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Infrared Imaging Mat & Detectors, Shanghai 200083, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Electron-Injection; e-SWIR detector; High responsivity; InGaAs/GaAsSb T2SL; HETEROJUNCTION PHOTOTRANSISTORS; CURRENT-GAIN; RESPONSIVITY; NOISE;
D O I
10.1016/j.infrared.2024.105406
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, we report a high-sensitive extended short-wave infrared (e-SWIR) Electron-Injection (EI) photodetector based on InGaAs/GaAsSb type-II superlattice (T2SL). To achieve high gain and low dark current noise, the EI photodetector involved in this letter employs a multi-layer heterogeneous band structure, composed of InAlAs, GaAsSb and InGaAs/GaAsSb T2SL, which can facilitate electron injection and effectively reduce recombination and thermal generation within the device. Thanks to the unique band alignment, this EI photodetector operates in high-gain linear-mode and requires only a small bias voltage about 0.8 V. At 200 K, the detector exhibits a 100 % cut-off wavelength of similar to 2.7 mu m, a peak responsivity of 3693.2 A/W corresponding to a gain of 7979.0 at 1.4 V, and a gain-normalized dark current density (GNDCD) of 1.4 x 10(-6) A/cm(2), which results in a remarkable specific detectivity of 6.0 x 10(13) cm<middle dot>Hz(1/2)/W. When operating at room temperature, this EI photodetector presents a decent responsivity of over 2000.0 A/W. Our results pave a potential way for ultra-sensitive e-SWIR infrared detection at high temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Short-Wave Infrared Nano-Injection Imaging Sensors
    Memis, Omer Gokalp
    Kohoutek, John
    Wu, Wei
    Gelfand, Ryan M.
    Mohseni, Hooman
    2010 IEEE SENSORS, 2010, : 128 - 131
  • [32] Study of the Short-Wave Infrared Range Photodetector Array Module in the Rangefinder Mode
    P. A. Kuznetsov
    I. S. Moschev
    Journal of Communications Technology and Electronics, 2021, 66 : 1123 - 1127
  • [33] Study of the Short-Wave Infrared Range Photodetector Array Module in the Rangefinder Mode
    Kuznetsov, P. A.
    Moschev, I. S.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2021, 66 (09) : 1123 - 1127
  • [34] Active Surface Passivation for mesa type short-wave infrared InGaAs Photodetectors
    Isik, Necati
    Kocaman, Serdar
    INFRARED PHYSICS & TECHNOLOGY, 2024, 143
  • [35] 2560×2048 short-wave infrared InGaAs focal plane detector (Invited)
    Yu C.
    Gong H.
    Li X.
    Huang S.
    Yang B.
    Zhu X.
    Shao X.
    Li T.
    Gu Y.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (03):
  • [36] Vapor-Phase Deposited High-Performance Uncooled PbS Short-Wave Infrared Photodetectors and Their Sensitization Dynamics
    Zhang, Xingchen
    Ouyang, Jun
    Ran, Xi
    Lan, Xinzheng
    ADVANCED OPTICAL MATERIALS, 2025,
  • [37] Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors
    Zimmermann, L
    John, J
    Degroote, S
    Borghs, G
    Van Hoof, C
    Nemeth, S
    APPLIED PHYSICS LETTERS, 2003, 82 (17) : 2838 - 2840
  • [38] Design and Fabrication of High Performance InGaAs near Infrared Photodetector
    Liu, Hezhuang
    Wang, Jingyi
    Guo, Daqian
    Shen, Kai
    Chen, Baile
    Wu, Jiang
    NANOMATERIALS, 2023, 13 (21)
  • [39] InGaAs/GaAsSb Type-II superlattice based photodiodes for short wave infrared detection
    Uliel, Y.
    Cohen-Elias, D.
    Sicron, N.
    Grimberg, I.
    Snapi, N.
    Paltiel, Y.
    Katz, M.
    INFRARED PHYSICS & TECHNOLOGY, 2017, 84 : 63 - 71
  • [40] III-V semiconductor extended short-wave infrared detectors
    Savich, Gregory R.
    Sidor, Daniel E.
    Du, Xiaoyu
    Wicks, Gary W.
    Debnath, Mukul C.
    Mishima, Tetsuya D.
    Santos, Michael B.
    Golding, Terry D.
    Jain, Manish
    Craig, Adam P.
    Marshall, Andrew R. J.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2017, 35 (02):