Robust Preference-Guided Based Disentangled Graph Social Recommendation

被引:0
|
作者
Ma, Gang-Feng [1 ]
Yang, Xu-Hua [1 ]
Zhou, Yanbo [1 ]
Long, Haixia [1 ]
Huang, Wei [1 ]
Gong, Weihua [1 ]
Liu, Sheng [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
Social networking (online); Self-supervised learning; Graph neural networks; Vectors; Training; Supervised learning; Recommender systems; Disentangled preference representation; robustness; self-supervised learning; social recommendation;
D O I
10.1109/TNSE.2024.3401476
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Social recommendations introduce additional social information to capture users' potential item preferences, thereby providing more accurate recommendations. However, friends do not always have the same or similar preferences, which means that social information is redundant and often biased for user-item interaction network. In addition, current social recommendation models focus on the item-level preferences, neglecting the critical fine-grained preference influence factors. To address these issues, we propose the Robust Preference-Guided based Disentangled Graph Social Recommendation (RPGD). First, we employ a graph neural network to adaptively convert the social network into a social preference network based on social information and user-item interaction information, reducing bias between social relationships and preference relationships. Then, we propose a self-supervised learning method that utilizes the social network to constrain and optimize the social preference network, thereby enhancing the stability of the network. Finally, we propose a method for disentangled preference representation to explore fine-grained preference influence factors, that enhance the performance of user and item representations. We conducted experiments on some open-source real-world datasets, and the results show that RPGD outperforms the SOTA performance on social recommendations.
引用
收藏
页码:4898 / 4910
页数:13
相关论文
共 50 条
  • [31] Social Recommendation based on Graph Neural Networks
    Sun, Hongji
    Lin, Lili
    Chen, Riqing
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 489 - 496
  • [32] Recommendation on Social Network Based on Graph Model
    Li, Jun
    Ma, Shuchao
    Hong, Shuang
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 7548 - 7551
  • [33] Revisiting Graph based Social Recommendation: A Distillation Enhanced Social Graph Network
    Tao, Ye
    Li, Ying
    Zhang, Su
    Hou, Zhirong
    Wu, Zhonghai
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2830 - 2838
  • [34] Causal Disentangled Variational Auto-Encoder for Preference Understanding in Recommendation
    Wang, Siyu
    Chen, Xiaocong
    Sheng, Quan Z.
    Zhang, Yihong
    Yao, Lina
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1874 - 1878
  • [35] Robust social recommendation based on contrastive learning and dual-stage graph neural network
    Ma, Gang-Feng
    Yang, Xu-Hua
    Long, Haixia
    Zhou, Yanbo
    Xu, Xin-Li
    NEUROCOMPUTING, 2024, 584
  • [36] A graph neural network framework based on preference-aware graph diffusion for recommendation
    Shu, Tao
    Shi, Lei
    Zhu, Chuangying
    Liu, Xia
    FRONTIERS IN PSYCHIATRY, 2022, 13
  • [37] Sampling Efficient Deep Reinforcement Learning Through Preference-Guided Stochastic Exploration
    Huang, Wenhui
    Zhang, Cong
    Wu, Jingda
    He, Xiangkun
    Zhang, Jie
    Lv, Chen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (12) : 1 - 12
  • [38] PGFNet: Preference-Guided Filtering Network for Two-View Correspondence Learning
    Liu, Xin
    Xiao, Guobao
    Chen, Riqing
    Ma, Jiayi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1367 - 1378
  • [39] Contrastive Preference-Guided Active Learning Approach Based on Ranking Correlation for Real-Time Safety Assessment
    Liu, Zeyi
    He, Xiao
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, : 1 - 12
  • [40] Intent-aware Recommendation via Disentangled Graph Contrastive Learning
    Wang, Yuling
    Wang, Xiao
    Huang, Xiangzhou
    Yu, Yanhua
    Li, Haoyang
    Zhang, Mengdi
    Guo, Zirui
    Wu, Wei
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 2343 - 2351