Collision Dynamics of Motorized Deformable Propellers for Drones

被引:0
|
作者
Hung Tien Pham [1 ]
Dinh Quang Nguyen [2 ]
Son Tien Bui [2 ]
Loianno, Giuseppe [3 ]
Van Anh Ho [1 ,4 ]
机构
[1] Japan Adv Inst Sci & Thchnol, Sch Mat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
[2] Hanoi Univ Ind, 298 Cau Dien St, Hanoi, Vietnam
[3] NYU, Tandon Sch Engn, Brooklyn, NY 11201 USA
[4] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
关键词
AVOIDANCE; UAV;
D O I
10.1109/UR61395.2024.10597535
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper investigates and analyzes the behavior of a deformable propeller during and after collisions. The experimental setup includes a deformable propeller, a BLDC motor, and a collision initiated while the propeller is rotating steadily. Here, we examine the changes in propeller's angular velocity over time from the start of the collision until it fully recovers its initial velocity. This variation will be compared between the experimentally measured wing velocity using an encoder and the calculated propeller's angular velocity in the simulation. The constructed model describes the relationship between propeller's angular velocity and the input voltage supplied to the motor based on the Lagrange method. The study confirmed the shape transformation process and full restoration of the propeller's original shape following collisions through high-speed video analysis. The results demonstrate consistent monitoring of collision initiation and the subsequent recovery process. This research enhances comprehension of the collision dynamics, thereby contributing to a deeper understanding of the fundamental physics governing deformable propellers, ultimately enhancing safety for drones.
引用
收藏
页码:176 / 183
页数:8
相关论文
共 50 条
  • [41] Ray-traced collision detection for deformable bodies
    Hermann, Everton
    Faure, Francois
    Raffin, Bruno
    GRAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2008, : 293 - +
  • [42] Fast Algorithm for Collision Detection between Deformable Objects
    Nouicer, M.
    Ammi, M.
    Kheddar, A.
    INTELLIGENT SYSTEMS AND AUTOMATION, 2009, 1107 : 311 - +
  • [43] WIPI β-propellers at the crossroads of autophagosome and lipid droplet dynamics
    Pfisterer, Simon G.
    Bakula, Daniela
    Cezanne, Alice
    Robenek, Horst
    Proikas-Cezanne, Tassula
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2014, 42 : 1414 - 1417
  • [44] DYNAMICS OF EXCITONS IN DEFORMABLE LATTICE
    TOYOZAWA, Y
    JOURNAL OF LUMINESCENCE, 1981, 24-5 (NOV) : 23 - 30
  • [45] SPREADING DYNAMICS ON DEFORMABLE SOLIDS
    SHANAHAN, MER
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1987, 305 (13): : 1149 - 1152
  • [46] Drones in the Big City: Autonomous Collision Avoidance for Aerial Delivery Services
    de Oliveira, Fabiola M. C.
    Bittencourt, Luiz F.
    Bianchi, Reinaldo A. C.
    Kamienski, Carlos A.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 4657 - 4674
  • [47] Energy-Efficient Formation Morphing for Collision Avoidance in a Swarm of Drones
    Yasin, Jawad Naveed
    Mohamed, Sherif Abdelmonem Sayed
    Haghbayan, Mohammad-Hashem
    Heikkonen, Jukka
    Tenhunen, Hannu
    Yasin, Muhammad Mehboob
    Plosila, Juha
    IEEE ACCESS, 2020, 8 : 170681 - 170695
  • [48] Collision-Free Sensor Data Collection using LoRaWAN and Drones
    Zorbas, Dimitrios
    O'Flynn, Brendan
    2018 GLOBAL INFORMATION INFRASTRUCTURE AND NETWORKING SYMPOSIUM (GIIS), 2018,
  • [49] Comprehensive Review of Drones Collision Avoidance Schemes: Challenges and Open Issues
    Rezaee, Mohammad Reza
    Hamid, Nor Asilah Wati Abdul
    Hussin, Masnida
    Zukarnain, Zuriati Ahmad
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 6397 - 6426
  • [50] ROTATIONAL DYNAMICS OF A DEFORMABLE MEDIUM
    GEROYANNIS, VS
    TOKIS, JN
    ASTROPHYSICS AND SPACE SCIENCE, 1977, 51 (02) : 409 - 427