3D printing of strontium-enriched biphasic calcium phosphate scaffolds for bone regeneration

被引:0
|
作者
Oliveira, Rodrigo L. M. S. [1 ]
Ferraz, Marcos C. [1 ]
Cardoso, Lais Medeiros [2 ,3 ]
Li, Zhongrui [4 ]
Albers, Ana Paula F. [1 ]
Bottino, Marco C. [3 ,4 ]
Triches, Eliandra S. [1 ,3 ,4 ]
机构
[1] Univ Fed Sao Paulo UNIFESP, Bioceram Lab, Inst Ciencia & Tecnol, BR-12231280 Sao Jose Dos Campos, SP, Brazil
[2] Sao Paulo State Univ UNESP, Araraquara Sch Dent, Dept Dent Mat & Prosthodont, BR-14801385 Araraquara, SP, Brazil
[3] Univ Michigan, Sch Dent, Dept Cariol Restorat Sci & Endodont, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Coll Engn, Dept Biomed Engn, Ann Arbor, MI 48109 USA
基金
巴西圣保罗研究基金会;
关键词
(3-TCP; Strontium; Scaffolds; 3D-printing; Bone tissue engineering; BETA-TRICALCIUM PHOSPHATE;
D O I
10.1016/j.jmbbm.2024.106717
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Calcium phosphate (CaP) scaffolds doping with therapeutic ions are one of the focuses of recent bone tissue engineering research. Among the therapeutic ions, strontium stands out for its role in bone remodeling. This work reports a simple method to produce Sr-doped 3D-printed CaP scaffolds, using Sr-doping to induce partial phase transformation from (3-tricalcium phosphate ((3-TCP) to hydroxyapatite (HA), resulting in a doped biphasic calcium phosphate (BCP) scaffold. Strontium carbonate (SrCO3) was incorporated in the formulation of the 3Dprinting ink, studying (3-TCP:SrO mass ratios of 100:0, 95:5, and 90:10 (named as (3-TCP, (3-TCP/5-Sr, and (3-TCP/ 10-Sr, respectively). Adding SrCO3 in the 3D-printing ink led to a slight increase in viscosity but did not affect its printability, resulting in scaffolds with a high printing fidelity compared to the computational design. Interestingly, Sr was incorporated into the lattice structure of the scaffolds, forming hydroxyapatite (HA). No residual SrO or SrCO3 were observed in the XRD patterns of any composition, and HA was the majority phase of the (3-TCP/10-Sr scaffolds. The addition of Sr increased the compression strength of the scaffolds, with both (3-TCP/5Sr and (3-TCP/10-Sr performing better than the (3-TCP. Overall, (3-TCP/5-Sr presented higher mineralized nodules and mechanical strength, while (3-TCP scaffolds presented superior cell viability. The incorporation of SrCO3 in the ink formulation is a viable method to obtain Sr-BCP scaffolds. Thus, this approach could be explored with other CaP scaffolds aiming to optimize their performance and the addition of alternative therapeutic ions.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Production of platelet-rich plasma (PRP)-enriched scaffolds for bone tissue regeneration with 3D printing technology
    Tut, Tufan Arslan
    Cesur, Sumeyye
    Sahin, Ali
    Eren, Fatih
    Gunduz, Oguzhan
    EUROPEAN POLYMER JOURNAL, 2024, 219
  • [32] Biphasic Calcium Phosphate Encapsulating Homogenous Microsphere-Based Scaffolds For Bone Regeneration
    Gupta, V.
    Lyne, D.
    Detamore, M.
    TISSUE ENGINEERING PART A, 2015, 21 : S92 - S92
  • [33] 3D printing of calcium phosphate scaffolds with controlled release o antibacterial functions for jaw bone repair
    Sun, Huan
    Hu, Cheng
    Zhou, Changchun
    Wu, Lina
    Sun, Jianxun
    Zhou, Xuedong
    Xing, Fei
    Long, Cheng
    Kong, Qingquan
    Liang, Jie
    Fan, Yujiang
    Zhang, Xingdong
    MATERIALS & DESIGN, 2020, 189
  • [34] 3D printed strontium-zinc-phosphate bioceramic scaffolds with multiple biological functions for bone tissue regeneration
    Deng, Li
    Huang, Lingwei
    Pan, Hao
    Zhang, Qi
    Que, Yumei
    Fan, Chen
    Chang, Jiang
    Ni, Siyu
    Yang, Chen
    JOURNAL OF MATERIALS CHEMISTRY B, 2023, 11 (24) : 5469 - 5482
  • [35] Printability of calcium phosphate: Calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique
    Zhou, Zuoxin
    Buchanan, Fraser
    Mitchell, Christina
    Dunne, Nicholas
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 38 : 1 - 10
  • [36] 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration
    Zhang, Meng
    Lin, Rongcai
    Wang, Xin
    Xue, Jianmin
    Deng, Cuijun
    Feng, Chun
    Zhuang, Hui
    Ma, Jingge
    Qin, Chen
    Wan, Li
    Chang, Jiang
    Wu, Chengtie
    SCIENCE ADVANCES, 2020, 6 (12)
  • [37] 3D Printing of Scaffolds for Tissue Regeneration Applications
    Do, Anh-Vu
    Khorsand, Behnoush
    Geary, Sean M.
    Salem, Aliasger K.
    ADVANCED HEALTHCARE MATERIALS, 2015, 4 (12) : 1742 - 1762
  • [38] Effect of porosity and phase composition in 3D printed calcium phosphate scaffolds on bone tissue regeneration in vivo
    Raja, Naren
    Han, Shi Huan
    Cho, Minjoon
    Choi, Yeong-Jin
    Jin, Yuan-Zhe
    Park, Honghyun
    Lee, Jae Hyup
    Yun, Hui-suk
    Materials and Design, 2022, 219
  • [39] Effect of porosity and phase composition in 3D printed calcium phosphate scaffolds on bone tissue regeneration in vivo
    Raja, Naren
    Han, Shi Huan
    Cho, Minjoon
    Choi, Yeong-Jin
    Jin, Yuan-Zhe
    Park, Honghyun
    Lee, Jae Hyup
    Yun, Hui-suk
    MATERIALS & DESIGN, 2022, 219
  • [40] Editorial on the original article entitled "3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration" published in the Biomaterials on February 14, 2014
    Li, Lan
    Jiang, Qing
    ANNALS OF TRANSLATIONAL MEDICINE, 2015, 3