Linking the size of hard carbon particles with electrochemical response in sodium ion storage

被引:3
|
作者
Cao, Hailiang [1 ]
Meng, Liang [1 ]
Qin, Chen [1 ]
Han, Zhaohui [1 ]
Yang, Liangtao [2 ]
Dong, Hailiang [1 ]
Hou, Ying [1 ]
Xiao, Chuanyang [1 ]
Wang, Jun [3 ]
Guo, Junjie [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Sch Innovat & Entrepreneurship, Guangdong Prov Key Lab Energy Mat Elect Power, Shenzhen 518055, Peoples R China
关键词
Hard carbon; Particle size; Sodium-ion batteries; Electrochemical kinetics; Sodium-ion storage mechanism; ANODE MATERIALS; ENERGY-STORAGE; PERFORMANCE; ELECTRODES;
D O I
10.1016/j.apsusc.2024.161126
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon is considered to be one of the most promising anodes for sodium-ion batteries (SIBs) owing to its high capacity and abundant resources. However, the role of particle size on sodium ion storage is unclear, which leads to low capacity and initial coulombic efficiency (ICE) in practical application. In this work, a series of hard carbons with different particle sizes were prepared by an "up to down" strategy using simple grinding and ballmilling method to investigate the effect of particle size on electrochemical response of sodium ion storage. The particle size of hard carbon has negligible effect on initial specific capacity. However, it has a strong effect on the ICE and rate capability. The ICE reduces as the particle size decreases, but the rate performance in reverse. Moreover, impedance analysis and electrochemical kinetics show huge differences for different particle sizes. Insitu Raman technique was also adopted to further illustrate the sodium ion storage mechanism of hard carbon, and an "adsorption-intercalation-pore filling" mechanism is proposed. This work could provide a new perspective for the design of hard carbon materials with suitable structure for efficient sodium ion storage, helping to develop high performance SIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Joule heating for structure reconstruction of hard carbon with superior sodium ion storage performance
    Song, Ziqing
    Du, Qiyan
    Chen, Jing
    Huang, Jin
    Chen, Yue
    Zheng, Lituo
    Huang, Zhigao
    Dai, Hong
    Hong, Zhensheng
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [22] Typha-derived hard carbon for high-performance sodium ion storage
    Shen, Yinlin
    Sun, Shijiao
    Yang, Meng
    Zhao, Xiangyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 784 : 1290 - 1296
  • [23] Zinc-assisted modification of hard carbon for enhanced sodium-ion storage
    Xiao, Haoming
    Wang, Fujian
    Peng, Jun
    Luo, Junhui
    Li, Hongquan
    Wang, Ziheng
    Luo, Xianyou
    Chen, Yong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2025, 978
  • [24] Industrial-Scale Hard Carbon Designed to Regulate Electrochemical Polarization for Fast Sodium Storage
    Wu, Chun
    Yang, Yunrui
    Zhang, Yinghao
    Xu, Hui
    Huang, Wenjie
    He, Xiangxi
    Chen, Qinghang
    Dong, Huanhuan
    Li, Lin
    Wu, Xingqiao
    Chou, Shulei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (31)
  • [25] Electrochemical Characterization of Charge Storage at Anodes for Sodium-Ion Batteries Based on Corncob Waste-Derived Hard Carbon and Binder
    Bottoni, Luca
    Darjazi, Hamideh
    Sbrascini, Leonardo
    Staffolani, Antunes
    Gabrielli, Serena
    Pastore, Genny
    Tombesi, Alessia
    Nobili, Francesco
    CHEMELECTROCHEM, 2023, 10 (08)
  • [26] Sodium ion batteries: a newer electrochemical storage
    Nithya, C.
    Gopukumar, S.
    WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2015, 4 (03) : 253 - 278
  • [27] Innovative synthesis and sodium storage enhancement of closed-pore hard carbon for sodium-ion batteries
    Li, Weining
    Li, Junfeng
    Biney, Bernard Wiafe
    Yan, Yingchun
    Lu, Xiaping
    Li, Heng
    Liu, He
    Xia, Wei
    Liu, Dong
    Chen, Kun
    Guo, Aijun
    ENERGY STORAGE MATERIALS, 2025, 74
  • [28] Cross-linking matters: Building hard carbons with enhanced sodium-ion storage plateau capacities
    Chen, Binyi
    Meng, Qingwei
    Wang, Tiejun
    Zhang, Wenli
    Qiu, Xueqing
    JOURNAL OF POWER SOURCES, 2024, 624
  • [29] Growing curly graphene layer boosts hard carbon with superior sodium-ion storage
    Song, Minghao
    Song, Qiang
    Zhang, Tao
    Huo, Xiaomei
    Lin, Zezhou
    Hu, Zhaowen
    Dong, Lei
    Jin, Ting
    Shen, Chao
    Xie, Keyu
    NANO RESEARCH, 2023, 16 (07) : 9299 - 9309
  • [30] Enhanced sodium-ion storage of nitrogen-rich hard carbon by NaCl intercalation
    Hu, Mingxiang
    Yang, Le
    Zhou, Kai
    Zhou, Chengshuang
    Huang, Zheng-Hong
    Kang, Feiyu
    Lv, Ruitao
    CARBON, 2017, 122 : 680 - 686